skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Vacancy‐Enabled O3 Phase Stabilization for Manganese‐Rich Layered Sodium Cathodes
Abstract Manganese‐rich layered oxide materials hold great potential as low‐cost and high‐capacity cathodes for Na‐ion batteries. However, they usually form a P2 phase and suffer from fast capacity fade. In this work, an O3 phase sodium cathode has been developed out of a Li and Mn‐rich layered material by leveraging the creation of transition metal (TM) and oxygen vacancies and the electrochemical exchange of Na and Li. The Mn‐rich layered cathode material remains primarily O3 phase during sodiation/desodiation and can have a full sodiation capacity of ca. 220 mAh g−1. It delivers ca. 160 mAh g−1specific capacity between 2–3.8 V with >86 % retention over 250 cycles. The TM and oxygen vacancies pre‐formed in the sodiated material enables a reversible migration of TMs from the TM layer to the tetrahedral sites in the Na layer upon de‐sodiation and sodiation. The migration creates metastable states, leading to increased kinetic barrier that prohibits a complete O3‐P3 phase transition.  more » « less
Award ID(s):
1912885
PAR ID:
10220734
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
60
Issue:
15
ISSN:
1433-7851
Page Range / eLocation ID:
p. 8258-8267
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Li‐rich layered chalcogenides have recently led to better understanding of the anionic redox process and its associated high capacity while providing ways to overcome its practical limitations of voltage fade and irreversibility. This study reports on the feasibility of triggering anionic activity in Li2TiS3, through anionic substitution (Se for S) or cationic substitution (Fe for Ti). Herein, the chalcogenide chemical space is further explored to prepare mono‐substituted Li1.7Ti0.85Mn0.45Ch3(Ch = S/Se) and doubly substituted cationic and anionic phases (Li1.7Ti0.85Fe0.45S3‐zSez) which crystallize either in the O3‐ or O1‐type structures depending upon substituents. All series show a bell‐shape capacity variation as function of the transition metal (TM) substitution degree with values up to 240 mAh g−1. For specific compositions, a structural O3 to O1 phase transition is observed upon Li removal, which is not reversible upon Li re‐insertion due to kinetic limitations and negatively affects long‐term cycling performance. Density functional theory (DFT) calculations confirm the O3/O1 relative stability along the different series and point subtle electronic differences in the TM‐doping, rationalizing the structural and electrochemical behaviors of these phases upon cycling. These findings provide further insights into the link between structural and electronic stability, which is of key importance for designing chalcogenide‐based anionic redox compounds. 
    more » « less
  2. Abstract Rechargeable aqueous batteries with Zn2+as a working‐ion are promising candidates for grid‐scale energy storage because of their intrinsic safety, low‐cost, and high energy‐intensity. However, suitable cathode materials with excellent Zn2+‐storage cyclability must be found in order for Zinc‐ion batteries (ZIBs) to find practical applications. Herein, NaCa0.6V6O16·3H2O (NaCaVO) barnesite nanobelts are reported as an ultra‐stable ZIB cathode material. The original capacity reaches 347 mAh g−1at 0.1 A g−1, and the capacity retention rate is 94% after 2000 cycles at 2 A g−1and 83% after 10 000 cycles at 5 A g−1, respectively. Through a combined theoretical and experimental approach, it is discovered that the unique V3O8layered structure in NaCaVO is energetically favorable for Zn2+diffusion and the structural water situated between V3O8layers promotes a fast charge‐transfer and bulk migration of Zn2+by enlarging gallery spacing and providing more Zn‐ion storage sites. It is also found that Na+and Ca2+alternately suited in V3O8layers are the essential stabilizers for the layered structure, which play a crucial role in retaining long‐term cycling stability. 
    more » « less
  3. Abstract Organic materials with redox‐active oxygen functional groups are of great interest as electrode materials for alkali‐ion storage due to their earth‐abundant constituents, structural tunability, and enhanced energy storage properties. Herein, a hybrid carbon framework consisting of reduced graphene oxide and oxygen functionalized carbon quantum dots (CQDs) is developed via the one‐pot solvothermal reduction method, and a systematic study is undertaken to investigate its redox mechanism and electrochemical properties with Li‐, Na‐, and K‐ions. Due to the incorporation of CQDs, the hybrid cathode delivers consistent improvements in charge storage performance for the alkali‐ions and impressive reversible capacity (257 mAh g−1at 50 mA g−1), rate capability (111 mAh g−1at 1 A g−1), and cycling stability (79% retention after 10 000 cycles) with Li‐ion. Furthermore, density functional theory calculations uncover the CQD structure‐electrochemical reactivity trends for different alkali‐ion. The results provide important insights into adopting CQD species for optimal alkali‐ion storage. 
    more » « less
  4. Abstract With the rapid growth of the lithium‐ion battery (LIBs) market, recycling and re‐use of end‐of‐life LIBs to reclaim lithium (Li) and transition metal (TM) resources (e.g., Co, Ni), as well as eliminating pollution from disposal of waste batteries, has become an urgent task. Here, for the first time the ambient‐pressure relithiation of degraded LiNi0.5Co0.2Mn0.3O2(NCM523) cathodes via eutectic Li+molten‐salt solutions is successfully demonstrated. Combining such a low‐temperature relithiation process with a well‐designed thermal annealing step, NCM523 cathode particles with significant Li loss (≈40%) and capacity degradation (≈50%) can be successfully regenerated to achieve their original composition and crystal structures, leading to effective recovery of their capacity, cycling stability, and rate capability to the levels of the pristine materials. Advanced characterization tools including atomic resolution electron microscopy imaging and electron energy loss spectroscopy are combined to demonstrate that NCM523's original layered crystal structure is recovered. For the first time, it is shown that layer‐to‐rock salt phase change on the surfaces and subsurfaces of the cathode materials can be reversed if lithium can be incorporated back to the material. The result suggests the great promise of using eutectic Li+molten–salt solutions for ambient‐pressure relithiation to recycle and remanufacture degraded LIB cathode materials. 
    more » « less
  5. Abstract A dual‐layer interphase that consists of an in‐situ‐formed lithium carboxylate organic layer and a thin BF3‐doped monolayer Ti3C2MXene on Li metal is reported. The honeycomb‐structured organic layer increases the wetting of electrolyte, leading to a thin solid electrolyte interface (SEI). While the BF3‐doped monolayer MXene provides abundant active sites for lithium homogeneous nucleation and growth, resulting in about 50% reduced thickness of inorganic‐rich components among the SEI layer. A low overpotential of less than 30 mV over 1000 h cycling in symmetric cells is received. The functional BF3 groups, along with the excellent electronic conductivity and smooth surface of the MXene, greatly reduce the lithium plating/stripping energy barrier, enabling a dendrite‐free lithium‐metal anode. The battery with this dual‐layer coated lithium metal as the anode displays greatly improved electrochemical performance. A high capacity‐retention of 175.4 mAh g−1at 1.0 C is achieved after 350 cycles. In a pouch cell with a capacity of 475 mAh, the battery still exhibits a high discharge capacity of 165.6 mAh g−1with a capacity retention of 90.2% after 200 cycles. In contrast to the fast capacity decay of pure Li metal, the battery using NCA as the cathode also displays excellent capacity retention in both coin and pouch cells. The dual‐layer modified surface provides an effective approach in stabilizing the Li‐metal anode. 
    more » « less