skip to main content


Title: Security Analysis of Unified Payments Interface and Payment Apps in India
Since 2016, with a strong push from the Government of India, smartphone-based payment apps have become mainstream, with over $50 billion transacted through these apps in 2018. Many of these apps use a common infrastructure introduced by the Indian government, called the Unified Payments Interface (UPI), but there has been no security analysis of this critical piece of infrastructure that supports money transfers. This paper uses a principled methodology to do a detailed security analysis of the UPI protocol by reverse-engineering the design of this protocol through seven popular UPI apps. We discover previously-unreported multi-factor authentication design-level flaws in the UPI 1.0 specification that can lead to significant attacks when combined with an installed attacker-controlled application. In an extreme version of the attack, the flaws could allow a victim's bank account to be linked and emptied, even if a victim had never used a UPI app. The potential attacks were scalable and could be done remotely. We discuss our methodology and detail how we overcame challenges in reverse-engineering this unpublished application layer protocol, including that all UPI apps undergo a rigorous security review in India and are designed to resist analysis. The work resulted in several CVEs, and a key attack vector that we reported was later addressed in UPI 2.0.  more » « less
Award ID(s):
1646392
NSF-PAR ID:
10205624
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Usenix Security Symposium 2020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Apple Wireless Direct Link (AWDL) is a key protocol in Apple’s ecosystem used by over one billion iOS and macOS devices for device-to-device communications. AWDL is a proprietary extension of the IEEE 802.11 (Wi-Fi) standard and integrates with Bluetooth Low Energy (BLE) for providing services such as Apple AirDrop. We conduct the first security and privacy analysis of AWDL and its integration with BLE. We uncover several security and privacy vulnerabilities ranging from design flaws to implementation bugs leading to a man-in-the-middle (MitM) attack enabling stealthy modification of files transmitted via AirDrop, denial-of-service (DoS) attacks preventing communication, privacy leaks that enable user identification and long-term tracking undermining MAC address randomization, and DoS attacks enabling targeted or simultaneous crashing of all neighboring devices. The flaws span across AirDrop’s BLE discovery mechanism, AWDL synchronization, UI design, and Wi-Fi driver implementation. Our analysis is based on a combination of reverse engineering of protocols and code supported by analyzing patents. We provide proof-of-concept implementations and demonstrate that the attacks can be mounted using a low-cost ($20) micro:bit device and an off-the-shelf Wi-Fi card. We propose practical and effective countermeasures. While Apple was able to issue a fix for a DoS attack vulnerability after our responsible disclosure, the other security and privacy vulnerabilities require the redesign of some of their services. 
    more » « less
  2. Summary

    In recent years, mobile apps have become the infrastructure of many popular Internet services. It is now common that a mobile app serves millions of users across the globe. By examining the code of these apps, reverse engineers can learn various knowledge about the design and implementation of the apps. Real‐world cases have shown that the disclosed critical information allows malicious parties to abuse or exploit the app‐provided services for unrightful profits, leading to significant financial losses. One of the most viable mitigations against malicious reverse engineering is to obfuscate the apps. Despite that security by obscurity is typically considered to be an unsound protection methodology, software obfuscation can indeed increase the cost of reverse engineering, thus delivering practical merits for protecting mobile apps. In this paper, we share our experience of applying obfuscation to multiple commercial iOS apps, each of which has millions of users. We discuss the necessity of adopting obfuscation for protecting modern mobile business, the challenges of software obfuscation on the iOS platform, and our efforts in overcoming these obstacles. We especially focus on factors that are unique to mobile software development that may affect the design and deployment of obfuscation techniques. We report the outcome of our obfuscation with empirical experiments. We additionally elaborate on the follow‐up case studies about how our obfuscation affected the app publication process and how we responded to the negative impacts. This experience report can benefit mobile developers, security service providers, and Apple as the administrator of the iOS ecosystem.

     
    more » « less
  3. In recent years, mobile apps have become the infrastructure of many popular Internet services. It is now fairly common that a mobile app serves a large number of users across the globe. Different from web- based services whose important program logic is mostly placed on remote servers, many mobile apps require complicated client-side code to perform tasks that are critical to the businesses. The code of mobile apps can be easily accessed by any party after the software is installed on a rooted or jailbroken device. By examining the code, skilled reverse engineers can learn various knowledge about the design and implementation of an app. Real-world cases have shown that the disclosed critical information allows malicious parties to abuse or exploit the app-provided services for unrightful profits, leading to significant financial losses for app vendors. One of the most viable mitigations against malicious reverse engineering is to obfuscate the software before release. Despite that security by obscurity is typically considered to be an unsound protection methodology, software obfuscation can indeed increase the cost of reverse engineering, thus delivering practical merits for protecting mobile apps. In this paper, we share our experience of applying obfuscation to multiple commercial iOS apps, each of which has millions of users. We discuss the necessity of adopting obfuscation for protecting modern mobile business, the challenges of software obfuscation on the iOS platform, and our efforts in overcoming these obstacles. Our report can benefit many stakeholders in the iOS ecosystem, including developers, security service providers, and Apple as the administrator of the ecosystem. 
    more » « less
  4. The security threats to mobile application are growing explosively. Mobile app flaws and security defects could open doors for hackers to easily attack mobile apps. Secure software development must be addressed earlier in the development life cycle rather than fixing the security holes after attacking. Early eliminating against possible security vulnerability will help us increase the security of software and mitigate the consequence of damages of data loss caused by potential malicious attacking. In this paper, we present a static security analysis approach with open source FindSecurityBugs plugin for Android Studio IDE. We demonstrate that integration of the plugin enables developers secure mobile application and mitigating security risks during implementation time in Android Studio IDE. We demonstrate that integration of the plugin enables developers secure mobile application and mitigating security risks during implementation time. Secure software development must be addressed earlier in the development lifecycle rather than fixing the security holes after attacking. Early eliminating against possible security vulnerability will help us increase the security of software and mitigate the consequence of damages of data loss caused by potential malicious attacking. In this paper, we present a static security analysis approach with open source FindSecurityBugs plugin for Android Studio IDE. We demonstrate that integration of the plugin enables developers secure mobile application and mitigating security risks during implementation time. 
    more » « less
  5. In this paper, we investigate the security and privacy of the three critical procedures of the 4G LTE protocol (i.e., attach, detach, and paging), and in the process, uncover potential design flaws of the protocol and unsafe practices employed by the stakeholders. For exposing vulnerabilities, we propose a modelbased testing approach LTEInspector which lazily combines a symbolic model checker and a cryptographic protocol verifier in the symbolic attacker model. Using LTEInspector, we have uncovered 10 new attacks along with 9 prior attacks, categorized into three abstract classes (i.e., security, user privacy, and disruption of service), in the three procedures of 4G LTE. Notable among our findings is the authentication relay attack that enables an adversary to spoof the location of a legitimate user to the core network without possessing appropriate credentials. To ensure that the exposed attacks pose real threats and are indeed realizable in practice, we have validated 8 of the 10 new attacks and their accompanying adversarial assumptions through experimentation in a real testbed. 
    more » « less