skip to main content


Search for: All records

Award ID contains: 1646392

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper investigates an adversary's ease of attack in generating adversarial examples for real-world scenarios. We address three key requirements for practical attacks for the real-world: 1) automatically constraining the size and shape of the attack so it can be applied with stickers, 2) transform-robustness, i.e., robustness of a attack to environmental physical variations such as viewpoint and lighting changes, and 3) supporting attacks in not only white-box, but also black-box hard-label scenarios, so that the adversary can attack proprietary models. In this work, we propose GRAPHITE, an efficient and general framework for generating attacks that satisfy the above three key requirements. GRAPHITE takes advantage of transform-robustness, a metric based on expectation over transforms (EoT), to automatically generate small masks and optimize with gradient-free optimization. GRAPHITE is also flexible as it can easily trade-off transform-robustness, perturbation size, and query count in black-box settings. On a GTSRB model in a hard-label black-box setting, we are able to find attacks on all possible 1,806 victim-target class pairs with averages of 77.8% transform-robustness, perturbation size of 16.63% of the victim images, and 126K queries per pair. For digital-only attacks where achieving transform-robustness is not a requirement, GRAPHITE is able to find successful small-patch attacks with an average of only 566 queries for 92.2% of victim-target pairs. GRAPHITE is also able to find successful attacks using perturbations that modify small areas of the input image against PatchGuard, a recently proposed defense against patch-based attacks. 
    more » « less
  2. High quality Machine Learning (ML) models are often considered valuable intellectual property by companies. Model Stealing (MS) attacks allow an adversary with black-box access to a ML model to replicate its functionality by training a clone model using the predictions of the target model for different inputs. However, best available existing MS attacks fail to produce a high-accuracy clone without access to the target dataset or a representative dataset necessary to query the target model. In this paper, we show that preventing access to the target dataset is not an adequate defense to protect a model. We propose MAZE -- a data-free model stealing attack using zeroth-order gradient estimation that produces high-accuracy clones. In contrast to prior works, MAZE uses only synthetic data created using a generative model to perform MS. Our evaluation with four image classification models shows that MAZE provides a normalized clone accuracy in the range of 0.90x to 0.99x, and outperforms even the recent attacks that rely on partial data (JBDA, clone accuracy 0.13x to 0.69x) and on surrogate data (KnockoffNets, clone accuracy 0.52x to 0.97x). We also study an extension of MAZE in the partial-data setting and develop MAZE-PD, which generates synthetic data closer to the target distribution. MAZE-PD further improves the clone accuracy 0.97x to 1.0x) and reduces the query budget required for the attack by 2x-24x. 
    more » « less
  3. Several recent works have demonstrated highly effective model stealing (MS) attacks on Deep Neural Networks (DNNs) in black-box settings, even when the training data is unavailable. These attacks typically use some form of Out of Distribution (OOD) data to query the target model and use the predictions obtained to train a clone model. Such a clone model learns to approximate the decision boundary of the target model, achieving high accuracy on in-distribution examples. We propose Ensemble of Diverse Models (EDM) to defend against such MS attacks. EDM is made up of models that are trained to produce dissimilar predictions for OOD inputs. By using a different member of the ensemble to service different queries, our defense produces predictions that are highly discontinuous in the input space for the adversary's OOD queries. Such discontinuities cause the clone model trained on these predictions to have poor generalization on in-distribution examples. Our evaluations on several image classification tasks demonstrate that EDM defense can severely degrade the accuracy of clone models (up to 39.7%). Our defense has minimal impact on the target accuracy, negligible computational costs during inference, and is compatible with existing defenses for MS attacks. 
    more » « less
  4. null (Ed.)
    Since 2016, with a strong push from the Government of India, smartphone-based payment apps have become mainstream, with over $50 billion transacted through these apps in 2018. Many of these apps use a common infrastructure introduced by the Indian government, called the Unified Payments Interface (UPI), but there has been no security analysis of this critical piece of infrastructure that supports money transfers. This paper uses a principled methodology to do a detailed security analysis of the UPI protocol by reverse-engineering the design of this protocol through seven popular UPI apps. We discover previously-unreported multi-factor authentication design-level flaws in the UPI 1.0 specification that can lead to significant attacks when combined with an installed attacker-controlled application. In an extreme version of the attack, the flaws could allow a victim's bank account to be linked and emptied, even if a victim had never used a UPI app. The potential attacks were scalable and could be done remotely. We discuss our methodology and detail how we overcame challenges in reverse-engineering this unpublished application layer protocol, including that all UPI apps undergo a rigorous security review in India and are designed to resist analysis. The work resulted in several CVEs, and a key attack vector that we reported was later addressed in UPI 2.0. 
    more » « less
  5. null (Ed.)
    Adversarial training is an effective defense method to protect classification models against adversarial attacks. However, one limitation of this approach is that it can re- quire orders of magnitude additional training time due to high cost of generating strong adversarial examples dur- ing training. In this paper, we first show that there is high transferability between models from neighboring epochs in the same training process, i.e., adversarial examples from one epoch continue to be adversarial in subsequent epochs. Leveraging this property, we propose a novel method, Adversarial Training with Transferable Adversarial Examples (ATTA), that can enhance the robustness of trained models and greatly improve the training efficiency by accumulating adversarial perturbations through epochs. Compared to state-of-the-art adversarial training methods, ATTA enhances adversarial accuracy by up to 7.2% on CIFAR10 and requires 12 ∼ 14× less training time on MNIST and CIFAR10 datasets with comparable model robustness. 
    more » « less
  6. The use of third-party libraries to manage software complexity can expose open source software projects to vulnerabilities. However, project owners do not currently have a standard way to enable private disclosure of potential security vulnerabilities. This neglect may be caused in part by having no template to follow for disclosing such vulnerabilities. We analyzed 600 GitHub projects to determine how many projects contained a vulnerable dependency and whether the projects had a process in place to privately communicate security issues. We found that 385 out of 600 open source Java projects contained at least one vulnerable dependency, and only 13 of those 385 projects had a security vulnerability reporting process. That is, 96.6% of the projects with a vulnerability did not have a security notification process in place to allow for private disclosure. In determining whether the projects even had contact information publicly available, we found that 19.8% had no contact information publicly available, let alone a security vulnerability reporting process. We suggest two methods to allow for community members to privately disclose potential security vulnerabilities. 
    more » « less
  7. Security of Internet of Things (IoT) devices is a well-known concern as these devices come in increasing use in homes and commercial environments. To better understand the extent to which companies take security of the IoT devices seriously and the methods they use to secure them, this paper presents findings from a security analysis of 96 top-selling WiFi IoT devices on Amazon. We found that we could carry out a significant portion of the analysis by first analyzing the code of Android companion apps responsible for controlling the devices. An interesting finding was that these devices used only 32 unique companion apps; we found instances of devices from same as well as different brands sharing the same app, significantly reducing our work. We analyzed the code of these companion apps to understand how they communicated with the devices and the security of that communication. We found security problems to be widespread: 50% of the apps corresponding to 38% of the devices did not use proper encryption techniques; some even used well-known weak ciphers such as Caesar cipher. We also purchased 5 devices and confirmed the vulnerabilities found with exploits. In some cases, we were able to bypass the pairing process and still control the device. Finally, we comment on technical and non-technical lessons learned from the study that have security implications. 
    more » « less
  8. Emerging smart home platforms, which interface with a variety of physical devices and support third-party application development, currently use permission models inspired by smartphone operating systems—the permission to access operations are separated by the device which performs them instead of their functionality. Unfortunately, this leads to two issues: (1) apps that do not require access to all of the granted device operations have overprivileged access to them, (2) apps might pose a higher risk to users than needed because physical device operations are fundamentally risk-asymmetric — “door.unlock” provides access to burglars, and “door.lock” can potentially lead to getting locked out. Overprivileged apps with access to mixed-risk operations only increase the potential for damage. We present Tyche, a secure development methodology that leverages the risk-asymmetry in physical device operations to limit the risk that apps pose to smart home users, without increasing the user’s decision overhead. Tyche introduces the notion of risk-based permissions for IoT systems. When using risk-based permissions, device operations are grouped into units of similar risk, and users grant apps access to devices at that risk-based granularity. Starting from a set of permissions derived from the popular Samsung SmartThings platform, we conduct a user study involving domain-experts and Mechanical Turk users to compute a relative ranking of risks associated with device operations. We find that user assessment of risk closely matches that of domain experts. Using this insight, we define risk-based groupings of device operations, and apply it to existing SmartThings apps. We show that existing apps can reduce access to high-risk operations by 60% while remaining operable. 
    more » « less
  9. Deep neural networks (DNNs) are vulnerable to adversarial examples—maliciously crafted inputs that cause DNNs to make incorrect predictions. Recent work has shown that these attacks generalize to the physical domain, to create perturbations on physical objects that fool image classifiers under a variety of real-world conditions. Such attacks pose a risk to deep learning models used in safety-critical cyber-physical systems. In this work, we extend physical attacks to more challenging object detection models, a broader class of deep learning algorithms widely used to detect and label multiple objects within a scene. Improving upon a previous physical attack on image classifiers, we create perturbed physical objects that are either ignored or mislabeled by object detection models. We implement a Disappearance Attack, in which we cause a Stop sign to “disappear” according to the detector—either by covering the sign with an adversarial Stop sign poster, or by adding adversarial stickers onto the sign. In a video recorded in a controlled lab environment, the state-of-the-art YOLO v2 detector failed to recognize these adversarial Stop signs in over 85% of the video frames. In an outdoor experiment, YOLO was fooled by the poster and sticker attacks in 72.5% and 63.5% of the video frames respectively. We also use Faster R-CNN, a different object detection model, to demonstrate the transferability of our adversarial perturbations. The created poster perturbation is able to fool Faster R-CNN in 85.9% of the video frames in a controlled lab environment, and 40.2% of the video frames in an outdoor environment. Finally, we present preliminary results with a new Creation Attack, wherein innocuous physical stickers fool a model into detecting nonexistent objects. 
    more » « less
  10. Recent studies show that the state-of-the-art deep neural networks (DNNs) are vulnerable to adversarial examples, resulting from small-magnitude perturbations added to the input. Given that that emerging physical systems are using DNNs in safety-critical situations, adversarial examples could mislead these systems and cause dangerous situations. Therefore, understanding adversarial examples in the physical world is an important step towards developing resilient learning algorithms. We propose a general attack algorithm, Robust Physical Perturbations (RP2), to generate robust visual adversarial perturbations under different physical conditions. Using the real-world case of road sign classification, we show that adversarial examples generated using RP2 achieve high targeted misclassification rates against standard-architecture road sign classifiers in the physical world under various environmental conditions, including viewpoints. Due to the current lack of a standardized testing method, we propose a two-stage evaluation methodology for robust physical adversarial examples consisting of lab and field tests. Using this methodology, we evaluate the efficacy of physical adversarial manipulations on real objects. With a perturbation in the form of only black and white stickers, we attack a real stop sign, causing targeted misclassification in 100% of the images obtained in lab settings, and in 84.8% of the captured video frames obtained on a moving vehicle (field test) for the target classifier. 
    more » « less