skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Subspace Fitting Meets Regression: The Effects of Supervision and Orthonormality Constraints on Double Descent of Generalization Errors
We study the linear subspace fitting problem in the overparameterized setting, where the estimated subspace can perfectly interpolate the training examples. Our scope includes the least-squares solutions to subspace fitting tasks with varying levels of supervision in the training data (i.e., the proportion of input-output examples of the desired low-dimensional mapping) and orthonormality of the vectors defining the learned operator. This flexible family of problems connects standard, unsupervised subspace fitting that enforces strict orthonormality with a corresponding regression task that is fully supervised and does not constrain the linear operator structure. This class of problems is defined over a supervision-orthonormality plane, where each coordinate induces a problem instance with a unique pair of supervision level and softness of orthonormality constraints. We explore this plane and show that the generalization errors of the corresponding subspace fitting problems follow double descent trends as the settings become more supervised and less orthonormally constrained.  more » « less
Award ID(s):
1911094 1838177 1730574
PAR ID:
10205627
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of Machine Learning Research
ISSN:
2640-3498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Self-training is a standard approach to semi-supervised learning where the learner's own predictions on unlabeled data are used as supervision during training. In this paper, we reinterpret this label assignment process as an optimal transportation problem between examples and classes, wherein the cost of assigning an example to a class is mediated by the current predictions of the classifier. This formulation facilitates a practical annealing strategy for label assignment and allows for the inclusion of prior knowledge on class proportions via flexible upper bound constraints. The solutions to these assignment problems can be efficiently approximated using Sinkhorn iteration, thus enabling their use in the inner loop of standard stochastic optimization algorithms. We demonstrate the effectiveness of our algorithm on the CIFAR-10, CIFAR-100, and SVHN datasets in comparison with FixMatch, a state-of-the-art self-training algorithm. Our code is publicly available from github. 
    more » « less
  2. Many real-world applications require automated data annotation, such as identifying tissue origins based on gene expressions and classifying images into semantic categories. Annotation classes are often numerous and subject to changes over time, and annotating examples has become the major bottleneck for supervised learning methods. In science and other high-value domains, large repositories of data samples are often available, together with two sources of organic supervision: a lexicon for the annotation classes, and text descriptions that accompany some data samples. Distant supervision has emerged as a promising paradigm for exploiting such indirect supervision by automatically annotating examples where the text description contains a class mention in the lexicon. However, due to linguistic variations and ambiguities, such training data is inherently noisy, which limits the accuracy in this approach. In this paper, we introduce an auxiliary natural language processing system for the text modality, and incorporate co-training to reduce noise and augment signal in distant supervision. Without using any manually labeled data, our EZLearn system learned to accurately annotate data samples in functional genomics and scientific figure comprehension, substantially outperforming state-of-the-art supervised methods trained on tens of thousands of annotated examples. 
    more » « less
  3. Calzolari, Nicoletta; Kan, Min-Yen; Hoste, Veronique; Lenci, Alessandro; Sakti, Sakriani; Xue, Nianwen (Ed.)
    In this work, we revisit the problem of semi-supervised named entity recognition (NER) focusing on extremely light supervision, consisting of a lexicon containing only 10 examples per class. We introduce ELLEN, a simple, fully modular, neuro-symbolic method that blends fine-tuned language models with linguistic rules. These rules include insights such as ''One Sense Per Discourse'', using a Masked Language Model as an unsupervised NER, leveraging part-of-speech tags to identify and eliminate unlabeled entities as false negatives, and other intuitions about classifier confidence scores in local and global context. ELLEN achieves very strong performance on the CoNLL-2003 dataset when using the minimal supervision from the lexicon above. It also outperforms most existing (and considerably more complex) semi-supervised NER methods under the same supervision settings commonly used in the literature (i.e., 5% of the training data). Further, we evaluate our CoNLL-2003 model in a zero-shot scenario on WNUT-17 where we find that it outperforms GPT-3.5 and achieves comparable performance to GPT-4. In a zero-shot setting, ELLEN also achieves over 75% of the performance of a strong, fully supervised model trained on gold data. Our code is available at: https://github.com/hriaz17/ELLEN 
    more » « less
  4. Few-shot node classification is tasked to provide accurate predictions for nodes from novel classes with only few representative labeled nodes. This problem has drawn tremendous attention for its projection to prevailing real-world applications, such as product categorization for newly added commodity categories on an E-commerce platform with scarce records or diagnoses for rare diseases on a patient similarity graph. To tackle such challenging label scarcity issues in the non-Euclidean graph domain, meta-learning has become a successful and predominant paradigm. More recently, inspired by the development of graph self-supervised learning, transferring pretrained node embeddings for few-shot node classification could be a promising alternative to meta-learning but remains unexposed. In this work, we empirically demonstrate the potential of an alternative framework, \textit{Transductive Linear Probing}, that transfers pretrained node embeddings, which are learned from graph contrastive learning methods. We further extend the setting of few-shot node classification from standard fully supervised to a more realistic self-supervised setting, where meta-learning methods cannot be easily deployed due to the shortage of supervision from training classes. Surprisingly, even without any ground-truth labels, transductive linear probing with self-supervised graph contrastive pretraining can outperform the state-of-the-art fully supervised meta-learning based methods under the same protocol. We hope this work can shed new light on few-shot node classification problems and foster future research on learning from scarcely labeled instances on graphs. 
    more » « less
  5. Traditional linear subspace-based reduced order models (LS-ROMs) can be used to significantly accelerate simulations in which the solution space of the discretized system has a small dimension (with a fast decaying Kolmogorov n-width). However, LS-ROMs struggle to achieve speed-ups in problems whose solution space has a large dimension, such as highly nonlinear problems whose solutions have large gradients. Such an issue can be alleviated by combining nonlinear model reduction with operator learning. Over the past decade, many nonlinear manifold-based reduced order models (NM-ROM) have been proposed. In particular, NM-ROMs based on deep neural networks (DNN) have received increasing interest. This work takes inspiration from adaptive basis methods and specifically focuses on developing an NM-ROM based on Convolutional Neural Network-based autoencoders (CNNAE) with iteration-dependent trainable kernels. Additionally, we investigate DNN-based and quadratic operator inference strategies between latent spaces. A strategy to perform vectorized implicit time integration is also proposed. We demonstrate that the proposed CNN-based NM-ROM, combined with DNN- based operator inference, generally performs better than commonly employed strategies (in terms of prediction accuracy) on a benchmark advection-dominated problem. The method also presents substantial gain in terms of training speed per epoch, with a training time about one order of magnitude smaller than the one associated with a state-of-the-art technique performing with the same level of accuracy. 
    more » « less