skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How there got to be so many of us. The evolutionary story of population growth and a life history of cooperation
One of the defining features of human evolution is our demographic success. As of August 2019, the world’s population exceeds 7.7 billion. The human capacity for population growth has profound effects on people’s lives today, but it is also one of the remarkable stories of our evolutionary past. Although most research and public attention has centered on the past 200 years, when growth has increased exponentially, global population growth prior to that was not trifling. Before the industrial era, humans populated all of the world’s environments with more than a billion people. Importantly, it was deep in the past when the biological and social underpinnings were established that allow humans to excel as reproducers and survivors. The evolutionary trends in fertility and survival that gave rise to human demographic success were fundamentally shaped by our ability to cooperate. This essay focuses on how the human dietary niche and life history presented novel opportunities for cooperation that tied younger and older generations together in ways that gave us our demographic edge  more » « less
Award ID(s):
1632338
PAR ID:
10205662
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of anthropological research
Volume:
75
Issue:
4
ISSN:
2153-3806
Page Range / eLocation ID:
472-497
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There are calls for research into the historical evolutionary relationships between humans and their commensals, as it would greatly inform models that predict the spread of pests and diseases under urban population expansion. The earliest civilizations emerged approximately 10 000 years ago and created conditions ideal for the establishment and spread of commensal urban pests. Commensal relations between humans and pests likely emerged with these early civilizations; however, for most species (e.g. German cockroach and black rat), these relationships have formed relatively recently—within the last 5000 years—raising the question of whether others could have emerged earlier. Following comparative whole genome analysis of bed bugs,Cimex lectularius, belonging to two genetically distinct lineages, one associated with bats and the other with humans, coupled with demographic modelling, our findings suggests that while their association with humans dates back potentially hundreds of thousands of years, a dramatic change in the effective population size of the human-associated lineage occurred approximately 13 000 years ago; a pattern not found in the bat-associated lineage. The timing and magnitude of the demographic patterns provide compelling evidence that the human-associated lineage closely tracked the demographic history of modern humans and their movement into the first cities. As such, bed bugs may represent the firsttrueurban pest insect species. 
    more » « less
  2. Synopsis Climate resilience, a focus of many recent studies, has been examined from ecological, physiological, and evolutionary perspectives. However, sampling biases toward adults, males, and certain species have made establishing the link between environmental change and population-level change problematic. Here, we used data from four laboratory studies, in which we administered pre- and postnatal stressors, such as suboptimal incubation temperature, heat stress, and food restriction, to zebra finches. We then quantified hatching success, posthatch survival, and reproductive success, to parameterize age-structured population dynamics models with the goal of estimating the effect of the stressors on relative population growth rates. Using the same model structure, we tested the hypothesis that early life stages influence population growth rate more than later life stages. Our models suggested that stressful events during embryonic development, such as suboptimal incubation temperatures and reduced gas exchange for the embryos, have a greater total impact on population growth than posthatch stressors, such as heat stress and food restriction. However, among life history traits, differences in hatching success and sex ratio of offspring in response to stressors changed population growth rates more than differences in any other demographic rate estimates. These results suggest that when predicting population resilience against climate change, it is critical to account for effects of climate change on all life stages, including early stages of life, and to incorporate individuals’ physiology and stress tolerance that likely influence future stress responses, reproduction, and survival. 
    more » « less
  3. The time, extent, and genomic effect of the introgressions from archaic humans into ancestors of extant human populations remain some of the most exciting venues of population genetics research in the past decade. Several studies have shown population-specific signatures of introgression events from Neanderthals, Denisovans, and potentially other unknown hominin populations in different human groups. Moreover, it was shown that these introgression events may have contributed to phenotypic variation in extant humans, with biomedical and evolutionary consequences. In this study, we present a comprehensive analysis of the unusually divergent haplotypes in the Eurasian genomes and show that they can be traced back to multiple introgression events. In parallel, we document hundreds of deletion polymorphisms shared with Neanderthals. A locus-specific analysis of one such shared deletion suggests the existence of a direct introgression event from the Altai Neanderthal lineage into the ancestors of extant East Asian populations. Overall, our study is in agreement with the emergent notion that various Neanderthal populations contributed to extant human genetic variation in a population-specific manner. 
    more » « less
  4. Human brain reduction from the Late Pleistocene/Holocene to the modern day is a longstanding anthropological observation documented with numerous lines of independent evidence. In a recent study (DeSilva et al., 2021;Front. Ecol. Evol.), we analyzed a large compilation of fossil and recent human crania and determined that this reduction was surprisingly recent, occurring rapidly within the past 5,000 to 3,000 years of human history. We attributed such a change as a consequence of population growth and cooperative intelligence and drew parallels with similar evolutionary trends in eusocial insects, such as ants. In a reply to our study, Villmoare and Grabowski (2022;Front. Ecol. Evol.) reassessed our findings using portions of our dataset and were unable to detect any reduction in brain volume during this time frame. In this paper, responding to Villmoare and Grabowski’s critique, we reaffirm recent human brain size reduction in the Holocene, and encourage our colleagues to continue to investigate both the timing and causes of brain size reduction in humans in the past 10,000 years. 
    more » « less
  5. Abstract The nocturnal aye-aye, Daubentonia madagascariensis, is one of the most elusive lemurs on the island of Madagascar. The timing of its activity and arboreal lifestyle has generally made it difficult to obtain accurate assessments of population size using traditional census methods. Therefore, alternative estimates provided by population genetic inference are essential for yielding much needed information for conservation measures and for enabling ecological and evolutionary studies of this species. Here, we utilize genomic data from 17 individuals—including 5 newly sequenced, high-coverage genomes—to estimate this history. Essential to this estimation are recently published annotations of the aye-aye genome which allow for variation at putatively neutral genomic regions to be included in the estimation procedures, and regions subject to selective constraints, or in linkage to such sites, to be excluded owing to the biasing effects of selection on demographic inference. By comparing a variety of demographic estimation tools to develop a well-supported model of population history, we find strong support for two demes, separating northern Madagascar from the rest of the island. Additionally, we find that the aye-aye has experienced two severe reductions in population size. The first occurred rapidly, ∼3,000 to 5,000 years ago, and likely corresponded with the arrival of humans to Madagascar. The second occurred over the past few decades and is likely related to substantial habitat loss, suggesting that the species is still undergoing population decline and remains at great risk for extinction. 
    more » « less