skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A remark on the geography problem in Heegaard Floer homology
We give new obstructions to the module structures arising in Heegaard Floer homology. As a corollary, we characterize the possible modules arising as the Heegaard Floer homology of an integer homology sphere with one-dimensional reduced Floer homology. Up to absolute grading shifts, there are only two. We use this corollary to show that the chain complex depicted by Ozsváth, Stipsicz, and Szabó to argue that there is no algebraic obstruction to the existence of knots with trivial epsilon invariant and non-trivial upsilon invariant cannot be realized as the knot Floer complex of a knot.  more » « less
Award ID(s):
1812527
PAR ID:
10205770
Author(s) / Creator(s):
; ;
Editor(s):
Gay, David; Wu, Weiwei
Date Published:
Journal Name:
Proceedings of symposia in pure mathematics
Volume:
102
ISSN:
0082-0717
Page Range / eLocation ID:
103-111
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper generalizes the work of the second author and prove a grading shifting property, in sutured monopole and instanton Floer theories, for general balanced sutured manifolds. This result has a few consequences. First, we offer an algorithm that computes the Floer homologies of a family of sutured handle-bodies. Second, we obtain a canonical decomposition of sutured monopole and instanton Floer homologies and build polytopes for these two theories, which was initially achieved by Juhász for sutured (Heegaard) Floer homology. Third, we establish a Thurston-norm detection result for monopole and instanton knot Floer homologies, which were introduced by Kronheimer and Mrowka. The same result was originally proved by Ozsváth and Szabó for link Floer homology. Last, we generalize the construction of minus versions of monopole and instanton knot Floer homology, which was initially done for knots by the second author, to the case of links. Along with the construction of polytopes, we also proved that, for a balanced sutured manifold with vanishing second homology, the rank of the sutured monopole or instanton Floer homology bounds the depth of the balanced sutured manifold. As a corollary, we obtain an independent proof that monopole and instanton knot Floer homologies, as mentioned above, both detect fibred knots in S3. This result was originally achieved by Kronheimer and Mrowka. 
    more » « less
  2. Abstract We prove that the knot Floer complex of a fibered knot detects whether the monodromy of its fibration is right-veering.In particular, this leads to a purely knot Floer-theoretic characterization of tight contact structures, by the work of Honda–Kazez–Matić.Our proof makes use of the relationship between the Heegaard Floer homology of mapping tori and the symplectic Floer homology of area-preserving surface diffeomorphisms.We describe applications of this work to Dehn surgeries and taut foliations. 
    more » « less
  3. If a knot K in S^3 admits a pair of truly cosmetic surgeries, we show that the surgery slopes are either ±2 or ±1/q for some value of q that is explicitly determined by the knot Floer homology of K. Moreover, in the former case the genus of K must be 2, and in the latter case there is a bound relating q to the genus and the Heegaard Floer thickness of K. As a consequence, we show that the cosmetic crossing conjecture holds for alternating knots (or more generally, Heegaard Floer thin knots) with genus not equal to 2. We also show that the conjecture holds for any knot K for which each prime summand of K has at most 16 crossings; our techniques rule out cosmetic surgeries in this setting except for slopes ±1 and ±2 on a small number of knots, and these remaining examples can be checked by comparing hyperbolic invariants. These results make use of the surgery formula for Heegaard Floer homology, which has already proved to be a powerful tool for obstructing cosmetic surgeries; we get stronger obstructions than previously known by considering the full graded theory. We make use of a new graphical interpretation of knot Floer homology and the surgery formula in terms of immersed curves, which makes the grading information we need easier to access. 
    more » « less
  4. We show that all versions of Heegaard Floer homology, link Floer homology, and sutured Floer homology are natural. That is, they assign concrete groups to each based 3-manifold, based link, and balanced sutured manifold, respectively. Furthermore, we functorially assign isomorphisms to (based) diffeomorphisms, and show that this assignment is isotopy invariant. The proof relies on finding a simple generating set for the fundamental group of the “space of Heegaard diagrams,” and then showing that Heegaard Floer homology has no monodromy around these generators. In fact, this allows us to give sufficient conditions for an arbitrary invariant of multi-pointed Heegaard diagrams to descend to a natural invariant of 3-manifolds, links, or sutured manifolds. 
    more » « less
  5. We use Heegaard Floer homology to define an invariant of homology cobordism. This invariant is isomorphic to a summand of the reduced Heegaard Floer homology of a rational homology sphere equipped with a spin structure and is analogous to Stoffregen’s connected Seiberg–Witten Floer homology. We use this invariant to study the structure of the homology cobordism group and, along the way, compute the involutive correction terms $$\bar{d}$$ and $$\text{}\underline{d}$$ for certain families of three-manifolds. 
    more » « less