skip to main content

Title: Effectiveness and Compliance to Social Distancing During COVID-19
In the absence of pharmaceutical interventions to curb the spread of COVID-19, countries relied on a number of nonpharmaceutical interventions to fight the first wave of the pandemic. The most prevalent one has been stay-at-home orders, whose the goal is to limit the physical contact between people, which consequently will reduce the number of secondary infections generated. In this work, we use a detailed set of mobility data to evaluate the impact that these interventions had on alleviating the spread of the virus in the US as measured through the COVID-19-related deaths. To establish this impact, we use the notion of Granger causality between two time-series. We show that there is a unidirectional Granger causality, from the median percentage of time spent daily at home to the daily number of COVID-19-related deaths with a lag of 2 weeks. We further analyze the mobility patterns at the census block level to identify which parts of the population might encounter difficulties in adhering and complying with social distancing measures. This information is important, since it can consequently drive interventions that aim at helping these parts of the population.
Authors:
Award ID(s):
1739413
Publication Date:
NSF-PAR ID:
10205852
Journal Name:
ACM SIGKDD workshop on Epidemiology meets Data Mining and Knowledge discovery
Sponsoring Org:
National Science Foundation
More Like this
  1. Background Population mobility is closely associated with COVID-19 transmission, and it could be used as a proximal indicator to predict future outbreaks, which could inform proactive nonpharmaceutical interventions for disease control. South Carolina is one of the US states that reopened early, following which it experienced a sharp increase in COVID-19 cases. Objective The aims of this study are to examine the spatial-temporal relationship between population mobility and COVID-19 outbreaks and use population mobility data to predict daily new cases at both the state and county level in South Carolina. Methods This longitudinal study used disease surveillance data and Twitter-basedmore »population mobility data from March 6 to November 11, 2020, in South Carolina and its five counties with the largest number of cumulative confirmed COVID-19 cases. Population mobility was assessed based on the number of Twitter users with a travel distance greater than 0.5 miles. A Poisson count time series model was employed for COVID-19 forecasting. Results Population mobility was positively associated with state-level daily COVID-19 incidence as well as incidence in the top five counties (ie, Charleston, Greenville, Horry, Spartanburg, and Richland). At the state level, the final model with a time window within the last 7 days had the smallest prediction error, and the prediction accuracy was as high as 98.7%, 90.9%, and 81.6% for the next 3, 7, and 14 days, respectively. Among Charleston, Greenville, Horry, Spartanburg, and Richland counties, the best predictive models were established based on their observations in the last 9, 14, 28, 20, and 9 days, respectively. The 14-day prediction accuracy ranged from 60.3%-74.5%. Conclusions Using Twitter-based population mobility data could provide acceptable predictions of COVID-19 daily new cases at both the state and county level in South Carolina. Population mobility measured via social media data could inform proactive measures and resource relocations to curb disease outbreaks and their negative influences.« less
  2. Agent-based models (ABM) play a prominent role in guiding critical decision-making and supporting the development of effective policies for better urban resilience and response to the COVID-19 pandemic. However, many ABMs lack realistic representations of human mobility, a key process that leads to physical interaction and subsequent spread of disease. Therefore, we propose the application of Latent Dirichlet Allocation (LDA), a topic modeling technique, to foot-traffic data to develop a realistic model of human mobility in an ABM that simulates the spread of COVID-19. In our novel approach, LDA treats POIs as "words" and agent home census block groups (CBGs)more »as "documents" to extract "topics" of POIs that frequently appear together in CBG visits. These topics allow us to simulate agent mobility based on the LDA topic distribution of their home CBG. We compare the LDA based mobility model with competitor approaches including a naive mobility model that assumes visits to POIs are random. We find that the naive mobility model is unable to facilitate the spread of COVID-19 at all. Using the LDA informed mobility model, we simulate the spread of COVID-19 and test the effect of changes to the number of topics, various parameters, and public health interventions. By examining the simulated number of cases over time, we find that the number of topics does indeed impact disease spread dynamics, but only in terms of the outbreak's timing. Further analysis of simulation results is needed to better understand the impact of topics on simulated COVID-19 spread. This study contributes to strengthening human mobility representations in ABMs of disease spread.« less
  3. Abstract Background

    Non-pharmaceutical interventions (NPIs) have been implemented worldwide to curb COVID-19 spread. Belarus is a rare case of a country with a relatively modern healthcare system, where highly limited NPIs have been enacted. Thus, investigation of Belarusian COVID-19 dynamics is essential for the local and global assessment of the impact of NPI strategies.

    Methods

    We integrate genomic epidemiology and surveillance methods to investigate the spread of SARS-CoV-2 in Belarus in 2020. We utilize phylodynamics, phylogeography, and probabilistic bias inference to study the virus import and export routes, the dynamics of the effective reproduction number, and the incidence of SARS-CoV-2 infection.

    Results

    Heremore »we show that the estimated cumulative number of infections by June 2020 exceeds the confirmed case number by a factor of ~4 (95% confidence interval (2; 9)). Intra-country SARS-CoV-2 genomic diversity originates from at least 18 introductions from different regions, with a high proportion of regional transmissions. Phylodynamic analysis indicates a moderate reduction of the effective reproductive number after the introduction of limited NPIs, but its magnitude is lower than for developed countries with large-scale NPIs. On the other hand, the effective reproduction number estimate is comparable with that for the neighboring Ukraine, where NPIs were broader.

    Conclusions

    The example of Belarus demonstrates how countries with relatively low outward population mobility continue to be integral parts of the global epidemiological environment. Comparison of the effective reproduction number dynamics for Belarus and other countries reveals the effect of different NPI strategies but also emphasizes the role of regional Eastern European sociodemographic factors in the virus spread.

    « less
  4. Grilli, Jacopo (Ed.)
    A major strategy to prevent the spread of COVID-19 is the limiting of in-person contacts. However, limiting contacts is impractical or impossible for the many disabled people who do not live in care facilities but still require caregivers to assist them with activities of daily living. We seek to determine which interventions can best prevent infections of disabled people and their caregivers. To accomplish this, we simulate COVID-19 transmission with a compartmental model that includes susceptible, exposed, asymptomatic, symptomatically ill, hospitalized, and removed/recovered individuals. The networks on which we simulate disease spread incorporate heterogeneity in the risk levels of differentmore »types of interactions, time-dependent lockdown and reopening measures, and interaction distributions for four different groups (caregivers, disabled people, essential workers, and the general population). Of these groups, we find that the probability of becoming infected is largest for caregivers and second largest for disabled people. Consistent with this finding, our analysis of network structure illustrates that caregivers have the largest modal eigenvector centrality of the four groups. We find that two interventions—contact-limiting by all groups and mask-wearing by disabled people and caregivers—most reduce the number of infections in disabled and caregiver populations. We also test which group of people spreads COVID-19 most readily by seeding infections in a subset of each group and comparing the total number of infections as the disease spreads. We find that caregivers are the most potent spreaders of COVID-19, particularly to other caregivers and to disabled people. We test where to use limited infection-blocking vaccine doses most effectively and find that (1) vaccinating caregivers better protects disabled people from infection than vaccinating the general population or essential workers and that (2) vaccinating caregivers protects disabled people from infection about as effectively as vaccinating disabled people themselves. Our results highlight the potential effectiveness of mask-wearing, contact-limiting throughout society, and strategic vaccination for limiting the exposure of disabled people and their caregivers to COVID-19.« less
  5. Abstract. Given aggregated mobile device data, the goal is to understand the impact of COVID-19 policy interventions on mobility. This problem is vital due to important societal use cases, such as safely reopening the economy. Challenges include understanding and interpreting questions of interest to policymakers, cross-jurisdictional variability in choice and time of interventions, the large data volume, and unknown sampling bias. The related work has explored the COVID-19 impact on travel distance, time spent at home, and the number of visitors at different points of interest. However, many policymakers are interested in long-duration visits to high-risk business categories and understandingmore »the spatial selection bias to interpret summary reports. We provide an Entity Relationship diagram, system architecture, and implementation to support queries on long-duration visits in addition to fine resolution device count maps to understand spatial bias. We closely collaborated with policymakers to derive the system requirements and evaluate the system components, the summary reports, and visualizations.« less