skip to main content

Title: Spontaneous breaking of U(1) symmetry in coupled complex SYK models
A bstract As shown in [1], two copies of the large N Majorana SYK model can produce spontaneous breaking of a Z 2 symmetry when they are coupled by appropriate quartic terms. In this paper we similarly study two copies of the complex SYK model coupled by a quartic term preserving the U(1) × U(1) symmetry. We also present a tensor counterpart of this coupled model. When the coefficient α of the quartic term lies in a certain range, the coupled large N theory is nearly conformal. We calculate the scaling dimensions of fermion bilinear operators as functions of α . We show that the operator $$ {c}_{1i}^{\dagger }{c}_{2i} $$ c 1 i † c 2 i , which is charged under the axial U(1) symmetry, acquires a complex dimension outside of the line of fixed points. We derive the large N Dyson-Schwinger equations and show that, outside the fixed line, this U(1) symmetry is spontaneously broken at low temperatures because this operator acquires an expectation value. We support these findings by exact diagonalizations extrapolated to large N .  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Let $$u_{k}$$ u k be a solution of the Helmholtz equation with the wave number k , $$\varDelta u_{k}+k^{2} u_{k}=0$$ Δ u k + k 2 u k = 0 , on (a small ball in) either $${\mathbb {R}}^{n}$$ R n , $${\mathbb {S}}^{n}$$ S n , or $${\mathbb {H}}^{n}$$ H n . For a fixed point p , we define $$M_{u_{k}}(r)=\max _{d(x,p)\le r}|u_{k}(x)|.$$ M u k ( r ) = max d ( x , p ) ≤ r | u k ( x ) | . The following three ball inequality $$M_{u_{k}}(2r)\le C(k,r,\alpha )M_{u_{k}}(r)^{\alpha }M_{u_{k}}(4r)^{1-\alpha }$$ M u k ( 2 r ) ≤ C ( k , r , α ) M u k ( r ) α M u k ( 4 r ) 1 - α is well known, it holds for some $$\alpha \in (0,1)$$ α ∈ ( 0 , 1 ) and $$C(k,r,\alpha )>0$$ C ( k , r , α ) > 0 independent of $$u_{k}$$ u k . We show that the constant $$C(k,r,\alpha )$$ C ( k , r , α ) grows exponentially in k (when r is fixed and small). We also compare our result with the increased stability for solutions of the Cauchy problem for the Helmholtz equation on Riemannian manifolds. 
    more » « less
  2. A bstract We analyze the error correcting properties of the Sachdev-Ye-Kitaev model, with errors that correspond to erasures of subsets of fermions. We study the limit where the number of fermions erased is large but small compared to the total number of fermions. We compute the price of the quantum error correcting code, defined as the number of physical qubits needed to reconstruct whether a given operator has been acted upon the thermal state or not. By thinking about reconstruction via quantum teleportation, we argue for a bound that relates the price to the ordinary operator size in systems that display so-called detailed size winding [1]. We then find that in SYK the price roughly saturates this bound. Computing the price requires computing modular flowed correlators with respect to the density matrix associated to a subset of fermions. We offer an interpretation of these correlators as probing a quantum extremal surface in the AdS dual of SYK. In the large N limit, the operator algebras associated to subsets of fermions in SYK satisfy half-sided modular inclusion, which is indicative of an emergent Type III1 von Neumann algebra. We discuss the relationship between the emergent algebra of half-sided modular inclusions and bulk symmetry generators. 
    more » « less
  3. We consider a UV-complete field-theoretic model in general dimensions, including d=2+1, which consists of two copies of thelong-range vector models, with O(m) and O(N-m) global symmetry groups,perturbed by double-trace operators.Using conformal perturbation theorywe find weakly-coupled IR fixed points for N\geq 6 N ≥ 6 that reveal a spontaneousbreaking of global symmetry. Namely, at finite temperature the lower rank group is broken,with the pattern persisting at all temperatures due to scale-invariance. We provide evidence that the models in question are unitary and invariant under full conformal symmetry. Furthermore, we show that this model exhibits a continuous family of weakly interacting field theories at finite N. 
    more » « less
  4. The delocalization or scrambling of quantum information has emerged as a central ingredient in the understanding of thermalization in isolated quantum many-body systems. Recently, significant progress has been made analytically by modeling non-integrable systems as periodically driven systems, lacking a Hamiltonian picture, while honest Hamiltonian dynamics are frequently limited to small system sizes due to computational constraints. In this paper, we address this by investigating the role of conservation laws (including energy conservation) in the thermalization process from an information-theoretic perspective. For general non-integrable models, we use the equilibrium approximation to show that the maximal amount of information is scrambled (as measured by the tripartite mutual information of the time-evolution operator) at late times even when a system conserves energy. In contrast, we explicate how when a system has additional symmetries that lead to degeneracies in the spectrum, the amount of information scrambled must decrease. This general theory is exemplified in case studies of holographic conformal field theories (CFTs) and the Sachdev-Ye-Kitaev (SYK) model. Due to the large Virasoro symmetry in 1+1D CFTs, we argue that, in a sense, these holographic theories are not maximally chaotic, which is explicitly seen by the non-saturation of the second Rényi tripartite mutual information. The roles of particle-hole and U(1) symmetries in the SYK model are milder due to the degeneracies being only two-fold, which we confirm explicitly at both large- and small-N. We reinterpret the operator entanglement in terms of the growth of local operators, connecting our results with the information scrambling described by out-of-time-ordered correlators, identifying the mechanism for suppressed scrambling from the Heisenberg perspective. 
    more » « less
  5. Abstract

    To understand the mechanism behind high-zLyαnebulae, we simulate the scattering of Lyαin a Hihalo about a central Lyαsource. For the first time, we consider both smooth and clumpy distributions of halo gas, as well as a range of outflow speeds, total Hicolumn densities, Hispatial concentrations, and central source galaxies (e.g., with Lyαline widths corresponding to those typical of active galactic nucleus or star-forming galaxies). We compute the spatial-frequency diffusion and the polarization of the Lyαphotons scattered by atomic hydrogen. Our scattering-only model reproduces the typical size of Lyαnebulae (∼100 kpc) at total column densitiesNH I≥ 1020cm−2and predicts a range of positive, flat, and negative polarization radial gradients. We also find two general classes of Lyαnebula morphologies: with and without bright cores. Cores are seen whenNH Iis low, i.e., when the central source is directly visible, and are associated with a polarization jump, a steep increase in the polarization radial profile just outside the halo center. Of all the parameters tested in our smooth or clumpy medium model,NH Idominates the trends. The radial behaviors of the Lyαsurface brightness, spectral line shape, and polarization in the clumpy model with covering factorfc≳ 5 approach those of the smooth model at the sameNH I. A clumpy medium with highNH Iand lowfc≲ 2 generates Lyαfeatures via scattering that the smooth model cannot: a bright core, symmetric line profile, and polarization jump.

    more » « less