A<sc>bstract</sc> We propose a generalized protocol for constructing a dual free bulk theory from any boundary model of generalized free fields (GFFs). To construct the bulk operators, we employ a linear ansatz similar to the Hamilton-Kabat-Liftschytz-Lowe (HKLL) construction. However, unlike the HKLL construction, our protocol relies only on boundary data with no presupposed form for the bulk equations of motion, so our reconstructed bulk is fully emergent. For a (1+1)d bulk, imposing the bulk operator algebra as well as a causal structure is sufficient to determine the bulk operators and dynamics uniquely up to an unimportant local basis choice. We study the bulk construction for several two-sided SYK models with and without coupling between the two sides, and find good agreement with known results in the low-temperature conformal limit. In particular, we find bulk features consistent with the presence of a black hole horizon for the TFD state, and characterize the infalling fermion modes. We are also able to extract bulk quantities such as the curvature and bulk state correlators in terms of boundary quantities. In the presence of coupling between the two SYK models, we are able to observe evidence of the shockwave geometry and the traversable wormhole geometry using the two-sided mutual information between the reconstructed bulk operators. Our results show evidence that features of the geometric bulk can survive away from the low temperature conformal limit. Furthermore, the generality of the protocol allows it to be applied to other boundary theories with no canonical holographic bulk.
more »
« less
Quantum error correction in SYK and bulk emergence
A bstract We analyze the error correcting properties of the Sachdev-Ye-Kitaev model, with errors that correspond to erasures of subsets of fermions. We study the limit where the number of fermions erased is large but small compared to the total number of fermions. We compute the price of the quantum error correcting code, defined as the number of physical qubits needed to reconstruct whether a given operator has been acted upon the thermal state or not. By thinking about reconstruction via quantum teleportation, we argue for a bound that relates the price to the ordinary operator size in systems that display so-called detailed size winding [1]. We then find that in SYK the price roughly saturates this bound. Computing the price requires computing modular flowed correlators with respect to the density matrix associated to a subset of fermions. We offer an interpretation of these correlators as probing a quantum extremal surface in the AdS dual of SYK. In the large N limit, the operator algebras associated to subsets of fermions in SYK satisfy half-sided modular inclusion, which is indicative of an emergent Type III1 von Neumann algebra. We discuss the relationship between the emergent algebra of half-sided modular inclusions and bulk symmetry generators.
more »
« less
- Award ID(s):
- 1911298
- PAR ID:
- 10345948
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2022
- Issue:
- 6
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)A bstract The study of quantum gravity in the form of the holographic duality has uncovered and motivated the detailed investigation of various diagnostics of quantum chaos. One such measure is the operator size distribution, which characterizes the size of the support region of an operator and its evolution under Heisenberg evolution. In this work, we examine the role of the operator size distribution in holographic duality for the Sachdev-Ye-Kitaev (SYK) model. Using an explicit construction of AdS 2 bulk fermion operators in a putative dual of the low temperature SYK model, we study the operator size distribution of the boundary and bulk fermions. Our result provides a direct derivation of the relationship between (effective) operator size of both the boundary and bulk fermions and bulk SL(2; ℝ) generators.more » « less
-
A bstract Recently Leutheusser and Liu [1, 2] identified an emergent algebra of Type III 1 in the operator algebra of $$ \mathcal{N} $$ N = 4 super Yang-Mills theory for large N . Here we describe some 1/ N corrections to this picture and show that the emergent Type III 1 algebra becomes an algebra of Type II ∞ . The Type II ∞ algebra is the crossed product of the Type III 1 algebra by its modular automorphism group. In the context of the emergent Type II ∞ algebra, the entropy of a black hole state is well-defined up to an additive constant, independent of the state. This is somewhat analogous to entropy in classical physics.more » « less
-
A<sc>bstract</sc> The p-body SYK model at finite temperature exhibits submaximal chaos and contains stringy-like corrections to the dual JT gravity. It can be solved exactly in two different limits: “large p” SYK 1 ≪p≪Nand “double-scaled” SYKN,p → ∞withλ= 2p2/Nfixed. We clarify the relation between the two. Starting from the exact results in the double-scaled limit, we derive several observables in the large p limit. We compute euclidean 2n-point correlators and out-of-time-order four-point function at long lorentzian times. To compute the correlators we find the relevant asymptototics of the$$ {\mathcal{U}}_q\left( su\left(1,1\right)\right) $$ 6j-symbol.more » « less
-
Out-of-time-ordered correlators (OTOCs) have been extensively studied in recent years as a diagnostic of quantum information scrambling. In this paper, we study quantum information-theoretic aspects of the regularized finite-temperature OTOC. We introduce analytical results for the bipartite regularized OTOC (BROTOC): the regularized OTOC averaged over random unitaries supported over a bipartition. We show that the BROTOC has several interesting properties, for example, it quantifies the purity of the associated thermofield double state and the operator purity of the analytically continued time-evolution operator. At infinite-temperature, it reduces to one minus the operator entanglement of the time-evolution operator. In the zero-temperature limit and for nondegenerate Hamiltonians, the BROTOC probes the groundstate entanglement. By computing long-time averages, we show that the equilibration value of the BROTOC is intimately related to eigenstate entanglement. Finally, we numerically study the equilibration value of the BROTOC for various physically relevant Hamiltonian models and comment on its ability to distinguish integrable and chaotic dynamics.more » « less
An official website of the United States government

