A bstract We study the large charge sector of the defect CFT defined by the halfBPS Wilson loop in planar N = 4 supersymmetric YangMills theory. Specifically, we consider correlation functions of two large charge insertions and several light insertions in the doublescaling limit where the ’t Hooft coupling λ and the large charge J are sent to infinity, with the ratio J/ $$ \sqrt{\lambda } $$ λ held fixed. They are holographically dual to the expectation values of light vertex operators on a classical string solution with large angular momentum, which we evaluate in the leading large J limit. We also compute the twopoint function of large charge insertions by evaluating the onshell string action, supplemented by the boundary terms that generalize the one introduced by Drukker, Gross and Ooguri for the Wilson loop without insertions. For a special class of correlation functions, we reproduce the string results from field theory by using supersymmetric localization. The results are given by correlation functions in an “emergent” matrix model whose matrix size is proportional to J and whose spectral curve coincides with that of the classical string. Similar matrix models appeared in the study of extremal correlators in rank1 $$ \mathcal{N}more »
Giant Wilson loops and AdS2/dCFT1
A bstract The 1/2BPS Wilson loop in $$ \mathcal{N} $$ N = 4 supersymmetric YangMills theory is an important and wellstudied example of conformal defect. In particular, much work has been done for the correlation functions of operator insertions on the Wilson loop in the fundamental representation. In this paper, we extend such analyses to Wilson loops in the largerank symmetric and antisymmetric representations, which correspond to probe D3 and D5 branes with AdS 2 × S 2 and AdS 2 × S 4 worldvolume geometries, ending at the AdS 5 boundary along a onedimensional contour. We first compute the correlation functions of protected scalar insertions from supersymmetric localization, and obtain a representation in terms of multiple integrals that are similar to the eigenvalue integrals of the random matrix, but with important differences. Using ideas from the Fermi Gas formalism and the Clustering method, we evaluate their large N limit exactly as a function of the ’t Hooft coupling. The results are given by simple integrals of polynomials that resemble the Q functions of the Quantum Spectral Curve, with integration measures depending on the number of insertions. Next, we study the correlation functions of fluctuations on the probe D3 and more »
 Award ID(s):
 1914860
 Publication Date:
 NSFPAR ID:
 10206133
 Journal Name:
 Journal of High Energy Physics
 Volume:
 2020
 Issue:
 11
 ISSN:
 10298479
 Sponsoring Org:
 National Science Foundation
More Like this


A bstract We compute 1 /λ corrections to the fourpoint functions of halfBPS operators in SU( N ) $$ \mathcal{N} $$ N = 4 superYangMills theory at large N and large ’t Hooft coupling λ = $$ {g}_{\mathrm{YM}}^2N $$ g YM 2 N using two methods. Firstly, we relate integrals of these correlators to derivatives of the mass deformed S 4 free energy, which was computed at leading order in large N and to all orders in 1 /λ using supersymmetric localization. Secondly, we use AdS/CFT to relate these 1 /λ corrections to higher derivative corrections to supergravity for scattering amplitudes of KaluzaKlein scalars in IIB string theory on AdS 5 × S 5 , which in the flat space limit are known from worldsheet calculations. These two methods match at the order corresponding to the tree level R 4 interaction in string theory, which provides a precise check of AdS/CFT beyond supergravity, and allow us to derive the holographic correlators to tree level D 4 R 4 order. Combined with constraints from [1], our results can be used to derive CFT data to oneloop D 4 R 4 order. Finally, we use AdS/CFT to fix these correlators in themore »

A bstract We study a sector of the 5d maximally supersymmetric YangMills theory on S 5 consisting of 1 / 8BPS Wilson loop operators contained within a great S 3 inside S 5 . We conjecture that these observables are described by a 3d Chern Simons theory on S 3 , analytically continued to a pure imaginary ChernSimons level. Therefore, the expectation values of these 5d Wilson loops compute knot invariants. We verify this conjecture in the weaklycoupled regime from explicit Feynman diagram computations. At strong coupling, these Wilson loop operators lift to 1 / 8BPS surface operators in the 6d (2 , 0) theory on S 1 × S 5 . Using AdS/CFT, we show that these surface operators are dual to M2branes subject to certain calibration conditions required in order to preserve supersymmetry. We compute the renormalized action of a large class of calibrated M2branes and obtain a perfect match with the field theory prediction. Finally, we present a derivation of the 3d ChernSimons theory from 5d superYangMills theory using supersymmetric localization, modulo a subtle issue that we discuss.

Abstract We present a nonsupersymmetric deformation of probe branes describing conformal defects of codimension two in AdS/CFT. The worldvolume of the probe branes is deformed from AdS p × S 1 embedded in an AdS p +2 × ℳ D − p − 2 background to an embedding of Janus form, which uses an AdS p− 1 slicing of AdS p and in which the brane bends along the slicing coordinate. In field theory terms this realizes conformal interfaces on codimension two defects. We discuss these “Janus on the brane” solutions for AdS 3 × S 1 D3branes in the AdS 5 × S 5 solution of Type IIB, realizing interfaces on surface defects in $$ \mathcal{N} $$ N = 4 SYM, and show that similar solutions exist for probe branes in AdS p +2 × S 9 −p vacua of Mtheory and in the AdS 6 × S 4 solution of massive Type IIA.

A bstract We study the fourpoint function of the lowestlying halfBPS operators in the $$ \mathcal{N} $$ N = 4 SU( N ) superYangMills theory and its relation to the flatspace fourgraviton amplitude in type IIB superstring theory. We work in a large N expansion in which the complexified YangMills coupling τ is fixed. In this expansion, nonperturbative instanton contributions are present, and the SL(2 , ℤ) duality invariance of correlation functions is manifest. Our results are based on a detailed analysis of the sphere partition function of the massdeformed SYM theory, which was previously computed using supersymmetric localization. This partition function determines a certain integrated correlator in the undeformed $$ \mathcal{N} $$ N = 4 SYM theory, which in turn constrains the fourpoint correlator at separated points. In a normalization where the twopoint functions are proportional to N 2 − 1 and are independent of τ and $$ \overline{\tau} $$ τ ¯ , we find that the terms of order $$ \sqrt{N} $$ N and $$ 1/\sqrt{N} $$ 1 / N in the large N expansion of the fourpoint correlator are proportional to the nonholomorphic Eisenstein series $$ E\left(\frac{3}{2},\tau, \overline{\tau}\right) $$ E 3 2 τ τ ¯ and $$more »