skip to main content


Title: Dual-site occupancy induced broadband cyan emission in Ba 2 CaB 2 Si 4 O 14 :Ce 3+
There is a significant need to identify cyan-emitting phosphors capable of filling the “cyan-gap” (480–520 nm) in full-visible-spectrum phosphor-converted white light-emitting diodes (pc-wLEDs). Here, a new broadband cyan-emitting phosphor that enables addressing of this challenge is reported. The compound, Ba 2 CaB 2 Si 4 O 14 :Ce 3+ , presents a bright cyan emission peaking at 478 nm with a large full width at half maximum of 142 nm (6053 cm −1 ), and minimal thermal quenching. The photoluminescence properties originate from Ce 3+ residing at two different crystallographic sites, a [BaO 9 ] distorted elongated square pyramid and a [CaO 6 ] trigonal prism. This combination results in an efficient, broad emission covering the blue to green region of the visible spectrum. Fabricating a simple dichromatic ultraviolet ( λ ex = 370 nm) pumped pc-wLED using Ba 2 CaB 2 Si 4 O 14 :Ce 3+ along with a commercially available red phosphor demonstrates full-visible-spectrum white light with high color rendering index ( R a > 90) and tunable correlated color temperature, showing the potential of this material for achieving high-quality LED-based lighting.  more » « less
Award ID(s):
1847701 1911311
NSF-PAR ID:
10206140
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry C
Volume:
8
Issue:
44
ISSN:
2050-7526
Page Range / eLocation ID:
15626 to 15633
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Complex alkaline earth silicates have been extensively studied as rare-earth substituted phosphor hosts for use in solid-state lighting. One of the biggest challenges facing the development of new phosphors is understanding the relationship between the observed optical properties and the crystal structure. Fortunately, recent improvements in characterization techniques combined with advances in computational methodologies provide the research tools necessary to conduct a comprehensive analysis of these systems. In this work, a new Ce 3+ substituted phosphor is developed using Ba 5 Si 8 O 21 as the host crystal structure. The compound is evaluated using a combination of experimental and computational methods and shows Ba 5 Si 8 O 21 :Ce 3+ adopts a monoclinic crystal structure that was confirmed through Rietveld refinement of high-resolution synchrotron powder X-ray diffraction data. Photoluminescence spectroscopy reveals a broad-band blue emission centered at ∼440 nm with an absolute quantum yield of ∼45% under ultraviolet light excitation ( λ ex = 340 nm). This phosphor also shows a minimal chromaticity-drift but with moderate thermal quenching of the emission peak at elevated temperatures. The modest optical response of this phase is believed to stem from a combination of intrinsic structural complexity and the formation of defects because of the aliovalent rare-earth substitution. Finally, computational modeling provides essential insight into the site preference and energy level distribution of Ce 3+ in this compound. These results highlight the importance of using experiment and computation in tandem to interpret the relationship between observed optical properties and the crystal structures of all rare-earth substituted complex phosphors. 
    more » « less
  2. Abstract

    Computers, televisions, and smartphones are revolutionized by the invention of InGaN blue light‐emitting diode (LED) backlighting. Yet, continual exposure to the intense blue LED emission from these modern displays can cause insomnia and mood disorders. Developing “human‐centric” backlighting that uses a violet‐emitting LED chip and a trichromatic phosphor mixture to generate color images is one approach that addresses this problem. The challenge is finding a blue‐emitting phosphor that possesses a sufficiently small Stokes’ shift to efficiently down‐convert violet LED light and produce a narrow blue emission. This work reports a new oxynitride phosphor that meets this demand. K3AlP3O9N:Eu2+ exhibits an unexpectedly narrow (45 nm, 2206 cm−1), thermally robust, and efficient blue photoluminescence upon violet excitation. Computational modeling and temperature‐dependent optical property measurements reveal that the narrow emission arises from a rare combination of preferential excitation and site‐selective quenching. The resulting chromaticity coordinates of K3AlP3O9N:Eu2+ lie closer to the vertex of the Rec. 2020 than a blue LED chip and provides access to ≈10% more colors than a commercial tablet when combined with commercial red‐ and green‐emitting phosphors. Alongside the wide gamut, tuning the emission from the violet LED and phosphor blend can reduce blue light emissions to produce next‐generation, human‐centric displays.

     
    more » « less
  3. Abstract

    Efficient broadband near‐infrared (NIR) emitting materials with an emission peak centered above 830 nm are crucial for smart NIR spectroscopy‐based technologies. However, the development of these materials remains a significant challenge. Herein, a series of design rules rooted in computational methods and empirical crystal‐chemical analysis is applied to identify a new Cr3+‐substituted phosphor. The compound GaTaO4:Cr3+emerged from this study is based on the material's high structural rigidity, suitable electronic environment, and relatively weak electron–phonon coupling. Irradiating this new phosphor with 460 nm blue light generates a broadband NIR emission (λem,max = 840 nm) covering the 700–1100 nm region of the electromagnetic spectrum with a full width at half maximum of 140 nm. The phase has a high internal quantum yield of 91% and excellent thermal stability, maintaining 85% of the room temperature emission intensity at 100 °C. Fabricating a phosphor‐converted light‐emitting diode device shows that the new compound generates an intense NIR emission (178 mW at 500 mA) with photoelectric efficiency of 6%. This work not only provides a new material that has the potential for next‐generation high‐power NIR applications but also highlights a set of design rules capable of developing highly efficient long‐wavelength broadband NIR materials.

     
    more » « less
  4. null (Ed.)
    The proliferation of energy-efficient light-emitting diode (LED) lighting has resulted in continued exposure to blue light, which has been linked to cataract formation, circadian disruption, and mood disorders. Blue light can be readily minimized in pursuit of “human-centric” lighting using a violet LED chip (λem ≈ 405 nm) downconverted by red, green, and blue-emitting phosphors. However, few phosphors efficiently convert violet light to blue light. This work reports a new phosphor that meets this demand. Na2MgPO4F:Eu2+ can be excited by a violet LED yielding an efficient, bright blue emission. The material also shows zero thermal quenching and has outstanding chromatic stability. The chemical robustness of the phosphor was also confirmed through prolonged exposure to water and high temperatures. A prototype device using a 405 nm LED, Na2MgPO4F:Eu2+, and a green and red-emitting phosphor produces a warm white light with a higher color rendering index than a commercially purchased LED light bulb while significantly reducing the blue component. These results demonstrate the capability of Na2MgPO4F:Eu2+ as a next-generation phosphor capable of advancing human-centric lighting. 
    more » « less
  5. Broadband near infrared (NIR) emission materials are of interest for various applications including non-destructive biomedical imaging. In this work, ytterbium ions (Yb 3+ ) were successfully doped into Cs 2 AgInCl 6 :Cr 3+ (CAIC:Cr 3+ ) double perovskite single crystals (DPSCs) by a facile hydrothermal method. Under 365 nm excitation, the co-doped CAIC:Cr 3+ ,Yb 3+ DPSCs showed broad NIR emission ranging from 800 to 1400 nm, which spanned the NIR-I (700–900 nm) and NIR-II (1000–1700 nm) bio-windows, with an emission band at 1000 nm and a full-width at half maximum (FWHM) of 188 nm. It is found that Yb 3+ ion doping could effectively improve the photoluminescence (PL) performance of CAIC:Cr 3+ DPSCs. Compared to the photoluminescence quantum yield (PLQY) of 22.5% for the single doped CAIC:Cr 3+ , the co-doped CAIC:Cr 3+ ,Yb 3+ DPSCs show a higher PLQY of ∼45%, which is attributed to the synergistic effect of reduced non-radiative recombination due to defect passivation and increase in crystallinity, and energy transfer (ET) of self-trapped excitons (STEs) to Cr 3+ . As a demonstration of applications, NIR pc-LEDs were fabricated by combining the as-synthesized NIR-emitting phosphor CAIC:Cr 3+ ,Yb 3+ with InGaN UV chips ( λ em = 365 nm) and used to image veins in a palm and for night vision using a NIR camera. The results suggest that the synthesized CAIC:Cr 3+ ,Yb 3+ DPSCs have great potential in biological applications. 
    more » « less