Early predator detection is a key component of the predator-prey arms race and has driven the evolution of multiple animal hearing systems. Katydids (Insecta) have sophisticated ears, each consisting of paired tympana on each foreleg that receive sound both externally, through the air, and internally via a narrowing ear canal running through the leg from an acoustic spiracle on the thorax. These ears are pressure-time difference receivers capable of sensitive and accurate directional hearing across a wide frequency range. Many katydid species have cuticular pinnae which form cavities around the outer tympanal surfaces, but their function is unknown. We investigated pinnal function in the katydid Copiphora gorgonensis by combining experimental biophysics and numerical modelling using 3D ear geometries. We found that the pinnae in C. gorgonensis do not assist in directional hearing for conspecific call frequencies, but instead act as ultrasound detectors. Pinnae induced large sound pressure gains (20–30 dB) that enhanced sound detection at high ultrasonic frequencies (>60 kHz), matching the echolocation range of co-occurring insectivorous gleaning bats. These findings were supported by behavioural and neural audiograms and pinnal cavity resonances from live specimens, and comparisons with the pinnal mechanics of sympatric katydid species, which together suggest that katydid pinnae primarily evolved for the enhanced detection of predatory bats.
more »
« less
Phylogenomic analysis sheds light on the evolutionary pathways towards acoustic communication in Orthoptera
Abstract Acoustic communication is enabled by the evolution of specialised hearing and sound producing organs. In this study, we performed a large-scale macroevolutionary study to understand how both hearing and sound production evolved and affected diversification in the insect order Orthoptera, which includes many familiar singing insects, such as crickets, katydids, and grasshoppers. Using phylogenomic data, we firmly establish phylogenetic relationships among the major lineages and divergence time estimates within Orthoptera, as well as the lineage-specific and dynamic patterns of evolution for hearing and sound producing organs. In the suborder Ensifera, we infer that forewing-based stridulation and tibial tympanal ears co-evolved, but in the suborder Caelifera, abdominal tympanal ears first evolved in a non-sexual context, and later co-opted for sexual signalling when sound producing organs evolved. However, we find little evidence that the evolution of hearing and sound producing organs increased diversification rates in those lineages with known acoustic communication.
more »
« less
- Award ID(s):
- 1937815
- PAR ID:
- 10206541
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Stridulation is used by male katydids to produce soundviathe rubbing together of their specialised forewings, either by sustained or interrupted sweeps of the file producing different tones and call structures. There are many species of Orthoptera that remain undescribed and their acoustic signals are unknown. This study aims to measure and quantify the mechanics of wing vibration, sound production and acoustic properties of the hearing system in a new genus of Pseudophyllinae with taxonomic descriptions of two new species. The calling behaviour and wing mechanics of males were measured using micro-scanning laser Doppler vibrometry, microscopy, and ultrasound sensitive equipment. The resonant properties of the acoustic pinnae of the ears were obtainedviaμ-CT scanning and 3D printed experimentation, and numerical modelling was used to validate the results. Analysis of sound recordings and wing vibrations revealed that the stridulatory areas of the right tegmen exhibit relatively narrow frequency responses and produce narrowband calls between 12 and 20 kHz. As in most Pseudophyllinae, only the right mirror is activated for sound production. The acoustic pinnae of all species were found to provide a broadband increased acoustic gain from ~40–120 kHz by up to 25 dB, peaking at almost 90 kHz which coincides with the echolocation frequency of sympatric bats. The new genus, namedSatizabalusn. gen., is here derived as a new polytypic genus from the existing genusGnathoclita, based on morphological and acoustic evidence from one described (S. sodalisn. comb.) and two new species (S. jorgevargasin. sp. andS. haucan. sp.). Unlike most Tettigoniidae,Satizabalusexhibits a particular form of sexual dimorphism whereby the heads and mandibles of the males are greatly enlarged compared to the females. We suggest thatSatizabalusis related to the genusTrichotettix, also found in cloud forests in Colombia, and not toGnathoclita.more » « less
-
Ormia ochracea is a parasitoid fly notable for its impressive hearing abilities relative to its small size. Here, we use it as a model organism to investigate if minor size differences in paired sensory organs may be beneficial or neutral to an organism's perception abilities. We took high-resolution images of tympanal organs from 21 O. ochracea specimens and found a statistically significant surface area asymmetry (up to 6.88%) between the left and right membranes. Numerical experiments indicated that peak values of key sound localization variables increased with increasing tympanal asymmetry, which may explain features of the limited available physiological data.more » « less
-
Nityananda, Vivek (Ed.)Determining the acoustic ecology of extinct or rare species is challenging due to the inability to record their acoustic signals or hearing thresholds. Katydids and their relatives (Orthoptera: Ensifera) offer a model for inferring acoustic ecology of extinct and rare species, due to allometric parameters of their sound production organs. Here, the bioacoustics of the orthopteran Prophalangopsis obscura are investigated. This species is one of only eight remaining members of an ancient family with over 90 extinct species that dominated the acoustic landscape of the Jurassic. The species is known from only a single confirmed specimen–the 150-year-old holotype material housed at the London Natural History Museum. Using Laser-Doppler Vibrometry, 3D surface scanning microscopy, and known scaling relationships, it is shown that P . obscura produces a pure-tone song at a frequency of ~4.7 kHz. This frequency range is distinct but comparable to the calls of Jurassic relatives, suggesting a limitation of early acoustic signals in insects to sonic frequencies (<20 kHz). The acoustic ecology and importance of this species in understanding ensiferan evolution, is discussed.more » « less
-
Most of us have heard birds sing during the spring breeding season. Did you know that some fish also sing to attract mates? We study plainfin midshipman fish, a fascinating fish that makes its home along the Pacific Coast of North America. The big male fish sing during the summer months and their sound-producing muscles get bigger in the summer, probably to make them sound more attractive to females. Female midshipman fish go through seasonal changes, too. In the summer their hearing improves, which helps them pick the right male to mate with. We study hearing in female plainfin midshipman, measuring how their ears respond to sound and how the number of hearing cells in their ears changes between winter and summer. We want to know how seasonal changes in hormones affect hearing in this “songbird of the sea”.more » « less
An official website of the United States government

