The roughness and wettability of surfaces exploited by free-ranging geckos can be highly variable and attachment to these substrates is context dependent (e.g., presence or absence of surface water). Although previous studies focus on the effect of these variables on attachment independently, geckos encounter a variety of conditions in their natural environment simultaneously. Here, we measured maximum shear load of geckos in air and when their toes were submerged underwater on substrates that varied in both surface roughness and wettability. Gecko attachment was greater in water than in air on smooth and rough hydrophobic substrates, and attachment to rough hydrophilic substrates did not differ when tested in air or water. Attachment varied considerably with surface roughness and characterization revealed that routine measurements of root mean square height can misrepresent the complexity of roughness, especially when measured with single instruments. We used surface roughness power spectra to characterize substrate surface roughness and examined the relationship between gecko attachment performance across the power spectra. This comparison suggests that roughness wavelengths less than 70 nm predominantly dictate gecko attachment. This study highlights the complexity of attachment in natural conditions and the need for comprehensive surface characterization when studying biological adhesive system performance.
- Award ID(s):
- 1930744
- PAR ID:
- 10206550
- Date Published:
- Journal Name:
- Integrative and Comparative Biology
- Volume:
- 60
- Issue:
- 4
- ISSN:
- 1540-7063
- Page Range / eLocation ID:
- 829 to 839
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Metabolic rates of ectotherms are expected to increase with global trends of climatic warming. But the potential for rapid, compensatory evolution of lower metabolic rate in response to rising temperatures is only starting to be explored. Here, we explored rapid evolution of metabolic rate and locomotor performance in acorn‐dwelling ants (
Temnothorax curvispinosus ) in response to urban heat island effects. We reared ant colonies within a laboratory common garden (25°C) to generate a laboratory‐born cohort of workers and tested their acute plastic responses to temperature. Contrary to expectations, urban ants exhibited a higher metabolic rate compared with rural ants when tested at 25°C, suggesting a potentially maladaptive evolutionary response to urbanization. Urban and rural ants had similar metabolic rates when tested at 38°C, as a consequence of a diminished plastic response of the urban ants. Locomotor performance also evolved such that the running speed of urban ants was faster than rural ants under warmer test temperatures (32°C and 42°C) but slower under a cooler test temperature (22°C). The resulting specialist–generalist trade‐off and higher thermal optimum for locomotor performance might compensate for evolved increases in metabolic rate by allowing workers to more quickly scout and retrieve resources. -
Abstract The grasping capabilities and gait kinematics characteristic of primates are often argued to be adaptations for safely moving on small terminal branches. The goal of this study was to identify whether Eastern gray squirrels (
Sciurus carolinensis )—arboreal rodents that frequently move and forage on small branches, lack primate‐like grasping and gait patterns, and arguably represent extant analogs of a stem primate ancestor—adjust gait kinematics to narrow and nonhorizontal branches. We studied locomotor kinematics of free‐ranging and laboratory‐housed squirrels moving over various substrates. We used high‐speed video to film (a) a population of free‐ranging squirrels moving on natural substrates and (b) laboratory‐housed squirrels moving on horizontal poles. Substrates were coded as small, medium, or large relative to squirrel trunk diameter, and as inclined, declined, or horizontal. Free‐ranging squirrels used more gallops and half‐bounds on small‐ and medium‐sized substrates, and more high‐impact bounds, with reduced limb‐lead durations, on declined substrates. Laboratory squirrels moved at higher speeds than free‐ranging squirrels and responded to decreasing diameter by using more gallops and half‐bounds, lowering speed, and—controlling for speed—increasing mean duty factor, mean number of supporting limbs, and relative forelimb lead duration. Our inability to detect substantial diameter or orientation‐related gait adjustments in the wild may be due to a limited accounting of confounding influences (e.g., substrate compliance). Ultimately, studies assessing stability measures (e.g., center of mass fluctuations and peak vertical force) are required to assess whether primates' enhanced grasping and gait patterns engender performance advantages on narrow or oblique substrates. -
Abstract Objectives Laboratory studies have yielded important insights into primate locomotor mechanics. Nevertheless, laboratory studies fail to capture the range of ecological and structural variation encountered by free‐ranging primates. We present techniques for collecting kinematic data on wild primates using consumer grade high‐speed cameras and demonstrate novel methods for quantifying metric variation in arboreal substrates.
Materials and methods These methods were developed and applied to our research examining platyrrhine substrate use and locomotion at the Tiputini Biodiversity Station, Ecuador. Modified GoPro cameras equipped with varifocal zoom lenses provided high‐resolution footage (1080 p.; 120 fps) suitable for digitizing gait events. We tested two methods for remotely measuring branch diameter: the parallel laser method and the distance meter photogrammetric method. A forestry‐grade laser rangefinder was used to quantify substrate angle and a force gauge was used to measure substrate compliance. We also introduce GaitKeeper, a graphical user interface for MATLAB, designed for coding quadrupedal gait.
Results Parallel laser and distance meter methods provided accurate estimations of substrate diameter (percent error: 3.1–4.5%). The laser rangefinder yielded accurate estimations of substrate orientation (mean error = 2.5°). Compliance values varied tremendously among substrates but were largely explained by substrate diameter, substrate length, and distance of measurement point from trunk. On average, larger primates used relatively small substrates and traveled higher in the canopy.
Discussion Ultimately, these methods will help researchers identify more precisely how primate gait kinematics respond to the complexity of arboreal habitats, furthering our understanding of the adaptive context in which primate quadrupedalism evolved.
-
Abstract In tropical rain forests, the ant community can be divided into ground and arboreal faunas. Here, we report a thorough sampling of the arboreal ant fauna of La Selva Biological Station, a Neotropical rain forest site. Forty‐five canopy fogging samples were centered around large trees. Individual samples harbored an average of 35 ant species, with up to 55 species in a single sample. The fogging samples yielded 163 observed species total, out of a statistically estimated 199 species. We found no relationship between within‐sample ant richness and focal tree species, nor were the ant faunas of nearby trees more similar to each other than the faunas of widely spaced trees. Species density was high, and beta diversity was low: A single column of vegetation typically harbors at least a fifth of the entire arboreal ant fauna. Considering the entire fauna, based on 23,326 species occurrence records using a wide variety of collecting methods, 182 of 539 observed species (196 of 605, estimated statistically) were entirely arboreal. The arboreal ant fauna is thus about a third of the total La Selva ant fauna, a robust result because inventory completeness was similar for ground and arboreal ants. The taxonomic history of discovery of the species that make up the La Selva fauna reveals no disproportionately large pool of undiscovered ant species in the canopy. The last biotic frontier for tropical ants has been the rotten wood, leaf litter, and soil of the forest floor.
Abstract in Spanish is available with online material.