skip to main content


Title: Weston-Watkins Hinge Loss and Ordered Partitions
Multiclass extensions of the support vector machine (SVM) have been formulated in a variety of ways.A recent empirical comparison of nine such formulations [1]recommends the variant proposed by Westonand Watkins (WW), despite the fact that the WW-hinge loss is not calibrated with respect to the 0-1 loss.In this work we introduce a novel discrete loss function for multiclass classification, theordered partitionloss, and prove that the WW-hinge lossiscalibrated with respect to this loss. We also argue that theordered partition loss is maximally informative among discrete losses satisfying this property. Finally,we apply our theory to justify the empirical observation made by Doˇgan et al. [1] that the WW-SVMcan work well even under massive label noise, a challenging setting for multiclass SVMs.  more » « less
Award ID(s):
1838179
NSF-PAR ID:
10206638
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Multiclass extensions of the support vector machine (SVM) have been formulated in a variety of ways. A recent empirical comparison of nine such formulations [1] recommends the variant proposed by Weston and Watkins (WW), despite the fact that the WW-hinge loss is not calibrated with respect to the 0-1 loss. In this work we introduce a novel discrete loss function for multiclass classification, the ordered partition loss, and prove that the WW-hinge loss is calibrated with respect to this loss. We also argue that the ordered partition loss is minimally emblematic among discrete losses satisfying this property. Finally, we apply our theory to justify the empirical observation made by Doˇgan et al. [1] that the WW-SVM can work well even under massive label noise, a challenging setting for multiclass SVMs. 
    more » « less
  2. null (Ed.)
    Recent empirical evidence suggests that the Weston-Watkins support vector machine is among the best performing multiclass extensions of the binary SVM. Current state-of-the-art solvers repeatedly solve a particular subproblem approximately using an iterative strategy. In this work, we propose an algorithm that solves the subproblem exactly using a novel reparametrization of the Weston-Watkins dual problem. For linear WW-SVMs, our solver shows significant speed-up over the state-of-the-art solver when the number of classes is large. Our exact subproblem solver also allows us to prove linear convergence of the overall solver. 
    more » « less
  3. Recent empirical evidence suggests that the Weston-Watkins support vector machine is among the best performing multiclass extensions of the binary SVM. Current state-of-the-art solvers repeatedly solve a particular subproblem approximately using an iterative strategy. In this work, we propose an algorithm that solves the subproblem exactly using a novel reparametrization of the Weston-Watkins dual problem. For linear WW-SVMs, our solver shows significant speed-up over the state-of-the-art solver when the number of classes is large. Our exact subproblem solver also allows us to prove linear convergence of the overall solver. 
    more » « less
  4. Zhang, Tong (Ed.)
    We develop a rigorous approach for using a set of arbitrarily correlated weak supervision sources in order to solve a multiclass classification task when only a very small set of labeled data is available. Our learning algorithm provably converges to a model that has minimum empirical risk with respect to an adversarial choice over feasible labelings for a set of unlabeled data, where the feasibility of a labeling is computed through constraints defined by rigorously estimated statistics of the weak supervision sources. We show theoretical guarantees for this approach that depend on the information provided by the weak supervision sources. Notably, this method does not require the weak supervision sources to have the same labeling space as the multiclass classification task. We demonstrate the effectiveness of our approach with experiments on various image classification tasks. 
    more » « less
  5. Statistical relational learning models are powerful tools that combine ideas from first-order logic with probabilistic graphical models to represent complex dependencies. Despite their success in encoding large problems with a compact set of weighted rules, performing inference over these models is often challenging. In this paper, we show how to effectively combine two powerful ideas for scaling inference for large graphical models. The first idea, lifted inference, is a wellstudied approach to speeding up inference in graphical models by exploiting symmetries in the underlying problem. The second idea is to frame Maximum a posteriori (MAP) inference as a convex optimization problem and use alternating direction method of multipliers (ADMM) to solve the problem in parallel. A well-studied relaxation to the combinatorial optimization problem defined for logical Markov random fields gives rise to a hinge-loss Markov random field (HLMRF) for which MAP inference is a convex optimization problem. We show how the formalism introduced for coloring weighted bipartite graphs using a color refinement algorithm can be integrated with the ADMM optimization technique to take advantage of the sparse dependency structures of HLMRFs. Our proposed approach, lifted hinge-loss Markov random fields (LHL-MRFs), preserves the structure of the original problem after lifting and solves lifted inference as distributed convex optimization with ADMM. In our empirical evaluation on real-world problems, we observe up to a three times speed up in inference over HL-MRFs. 
    more » « less