Gradient coding is a method for mitigating straggling servers in a centralized computing network that uses erasure-coding techniques to distributively carry out first-order optimization methods. Randomized numerical linear algebra uses randomization to develop improved algorithms for large-scale linear algebra computations. In this paper, we propose a method for distributed optimization that combines gradient coding and randomized numerical linear algebra. The proposed method uses a randomized ā2 -subspace embedding and a gradient coding technique to distribute blocks of data to the computational nodes of a centralized network, and at each iteration the central server only requires a small number of computations to obtain the steepest descent update. The novelty of our approach is that the data is replicated according to importance scores, called block leverage scores, in contrast to most gradient coding approaches that uniformly replicate the data blocks. Furthermore, we do not require a decoding step at each iteration, avoiding a bottleneck in previous gradient coding schemes. We show that our approach results in a valid ā2 -subspace embedding, and that our resulting approximation converges to the optimal solution.
more »
« less
Weighted Gradient Coding with Leverage Score Sampling
A major hurdle in machine learning is scalability to massive datasets. Approaches to overcome this hurdle include compression of the data matrix and distributing the computations. Leverage score sampling provides a compressed approximation of a data matrix using an importance weighted subset. Gradient coding has been recently proposed in distributed optimization to compute the gradient using multiple unreliable worker nodes. By designing coding matrices, gradient coded computations can be made resilient to stragglers, which are nodes in a distributed network that degrade system performance. We present a novel weighted leverage score approach, that achieves improved performance for distributed gradient coding by utilizing an importance sampling.
more »
« less
- Award ID(s):
- 1838179
- PAR ID:
- 10206905
- Date Published:
- Journal Name:
- International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2020
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Matrix multiplication is a fundamental building block for large scale computations arising in various applications, including machine learning. There has been significant recent interest in using coding to speed up distributed matrix multiplication, that are robust to stragglers (i.e., machines that may perform slower computations). In many scenarios, instead of exact computation, approximate matrix multiplication, i.e., allowing for a tolerable error is also sufficient. Such approximate schemes make use of randomization techniques to speed up the computation process. In this paper, we initiate the study of approximate coded matrix multiplication, and investigate the joint synergies offered by randomization and coding. Specifically, we propose two coded randomized sampling schemes that use (a) codes to achieve a desired recovery threshold and (b) random sampling to obtain approximation of the matrix multiplication. Tradeoffs between the recovery threshold and approximation error obtained through random sampling are investigated for a class of coded matrix multiplication schemes.more » « less
-
Symmetric Nonnegative Matrix Factorization (SymNMF) is a technique in data analysis and machine learning that approximates a symmetric matrix with a product of a nonnegative, low-rank matrix and its transpose. To design faster and more scalable algorithms for SymNMF, we develop two randomized algorithms for its computation. The first algorithm uses randomized matrix sketching to compute an initial low-rank approximation to the input matrix and proceeds to rapidly compute a SymNMF of the approximation. The second algorithm uses randomized leverage score sampling to approximately solve constrained least squares problems. Many successful methods for SymNMF rely on (approximately) solving sequences of constrained least squares problems. We prove theoretically that leverage score sampling can approximately solve nonnegative least squares problems to a chosen accuracy with high probability. Additionally, we prove sampling complexity results for previously proposed hybrid sampling techniques which deterministically include high leverage score rows. This hybrid scheme is crucial for obtaining speedups in practice. Finally, we demonstrate that both methods work well in practice by applying them to graph clustering tasks on large real world data sets. These experiments show that our methods approximately maintain solution quality and achieve significant speedups for both large dense and large sparse problems.more » « less
-
We consider a sparse matrix-matrix multiplication (SpGEMM) setting where one matrix is square and the other is tall and skinny. This special variant, TS-SpGEMM, has important applications in multi-source breadth-first search, influence maximization, sparse graph embedding, and algebraic multigrid solvers. Unfortunately, popular distributed algorithms like sparse SUMMA deliver suboptimal performance for TS-SpGEMM. To address this limitation, we develop a novel distributed-memory algorithm tailored for TS SpGEMM. Our approach employs customized 1D partitioning for all matrices involved and leverages sparsity-aware tiling for efficient data transfers. In addition, it minimizes communication overhead by incorporating both local and remote computations. On average, our TSSpGEMM algorithm attains 5x performance gains over 2D and 3D SUMMA. Furthermore, we use our algorithm to implement multi-source breadth-first search and sparse graph embedding algorithms and demonstrate their scalability up to 512 Nodes (or 65,536 cores) on NERSC Perlmutter.more » « less
-
We show how to obtain improved active learning methods in the agnostic (adversarial noise) setting by combining marginal leverage score sampling with non- independent sampling strategies that promote spatial coverage. In particular, we propose an easily implemented method based on the pivotal sampling algorithm, which we test on problems motivated by learning-based methods for parametric PDEs and uncertainty quantification. In comparison to independent sampling, our method reduces the number of samples needed to reach a given target accuracy by up to 50%. We support our findings with two theoretical results. First, we show that any non-independent leverage score sampling method that obeys a weak one-sided lā independence condition (which includes pivotal sampling) can actively learn d dimensional linear functions with O(d log d) samples, matching independent sampling. This result extends recent work on matrix Chernoff bounds under lā independence, and may be of interest for analyzing other sampling strategies beyond pivotal sampling. Second, we show that, for the important case of polynomial regression, our pivotal method obtains an improved bound on O(d) samples.more » « less
An official website of the United States government

