skip to main content

Title: Comparison of two Mn IV Mn IV -bis-μ-oxo complexes {[Mn IV (N 4 (6-Me-DPEN))] 2 (μ-O) 2 } 2+ and {[Mn IV (N 4 (6-Me-DPPN))] 2 (μ-O) 2 } 2+
The addition of tert -butyl hydroperoxide ( t BuOOH) to two structurally related Mn II complexes containing N,N -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me-DPEN) and N,N -bis(6-methyl-2-pyridylmethyl)propane-1,2-diamine (6-Me-DPPN) results in the formation of high-valent bis-oxo complexes, namely di-μ-oxido-bis{[ N , N -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine]manganese(II)}( Mn — Mn ) bis(tetraphenylborate) dihydrate, [Mn(C 16 H 22 N 4 ) 2 O 2 ](C 24 H 20 B) 2 ·2H 2 O or {[Mn IV (N 4 (6-Me-DPEN))] 2 ( μ -O) 2 }(2BPh 4 )(2H 2 O) ( 1 ) and di-μ-oxido-bis{[ N , N -bis(6-methyl-2-pyridylmethyl)propane-1,3-diamine]manganese(II)}( Mn — Mn ) bis(tetraphenylborate) diethyl ether disolvate, [Mn(C 17 H 24 N 4 ) 2 O 2 ](C 24 H 20 B) 2 ·2C 4 H 10 O or {[Mn IV (N 4 (6-MeDPPN))] 2 ( μ -O) 2 }(2BPh 4 )(2Et 2 O) ( 2 ). Complexes 1 and 2 both contain the `diamond core' motif found previously in a number of iron, copper, and manganese high-valent bis-oxo compounds. The flexibility in the propyl linker in the ligand scaffold of 2 , as compared to that of the ethyl linker in 1 , results in more elongated Mn—N bonds, as one would expect. The Mn—Mn distances and Mn—O bond lengths more » support an Mn IV oxidation state assignment for the Mn ions in both 1 and 2 . The angles around the Mn centers are consistent with the local pseudo-octahedral geometry. « less
Authors:
; ; ;
Award ID(s):
1664682
Publication Date:
NSF-PAR ID:
10206939
Journal Name:
Acta Crystallographica Section E Crystallographic Communications
Volume:
76
Issue:
7
Page Range or eLocation-ID:
1042 to 1046
ISSN:
2056-9890
Sponsoring Org:
National Science Foundation
More Like this
  1. The investigation of the coordination chemistry of rare-earth metal complexes with cyanide ligands led to the isolation and crystallographic characterization of the Ln III cyanotriphenylborate complexes dichlorido(cyanotriphenylborato-κ N )tetrakis(tetrahydrofuran-κ O )lanthanide(III), [ Ln Cl 2 (C 19 H 15 BN)(C 4 H 8 O) 4 ] [lanthanide ( Ln ) = dysprosium (Dy) and yttrium Y)] from reactions of LnCl 3 , KCN, and NaBPh 4 . Attempts to independently synthesize the tetraethylammonium salt of (NCBPh 3 ) − from BPh 3 and [NEt 4 ][CN] in THF yielded crystals of the phenyl-substituted cyclic borate, tetraethylazanium 2,2,4,6-tetraphenyl-1,3,5,2λ 4 ,4,6-trioxatriborinan-2-ide, C 8 H 20 N + ·C 24 H 20 B 3 O 3 − or [NEt 4 ][B 3 (μ-O) 3 (C 6 H 5 ) 4 ]. The mechanochemical reaction of BPh 3 and [NEt 4 ][CN] without solvent produced crystals of tetraethylazanium cyanodiphenyl-λ 4 -boranyl diphenylborinate, C 8 H 20 N + ·C 25 H 20 B 2 NO − or [NEt 4 ][NCBPh 2 (μ-O)BPh 2 ]. Reaction of BPh 3 and KCN in THF in the presence of 2.2.2-cryptand (crypt) led to a crystal of bis[(2.2.2-cryptand)potassium] 2,2,4,6-tetraphenyl-1,3,5,2λ 4 ,4,6-trioxatriborinan-2-ide cyanomethyldiphenylborate tetrahydrofuran disolvate, 2C 18 H 36more »KN 2 O 6 + ·C 24 H 20 B 3 O 3 − ·C 14 H 13 BN − ·2C 4 H 8 O or [K(crypt)] 2 [B 3 (μ-O) 3 (C 6 H 5 ) 4 ][NCBPh 2 Me]·2THF. The [NCBPh 2 (μ-O)BPh 2 ] 1− and (NCBPh 2 Me) 1− anions have not been structurally characterized previously. The structure of 1-Y was refined as a two-component twin with occupancy factors 0.513 (1) and 0.487 (1). In 4 , one solvent molecule was disordered and included using multiple components with partial site-occupancy factors.« less
  2. High valent iron species are very reactive molecules involved in oxidation reactions of relevance to biology and chemical synthesis. Herein we describe iron( iv )–tosylimido complexes [Fe IV (NTs)(MePy 2 tacn)](OTf) 2 ( 1(IV)NTs ) and [Fe IV (NTs)(Me 2 (CHPy 2 )tacn)](OTf) 2 ( 2(IV)NTs ), (MePy 2 tacn = N -methyl- N , N -bis(2-picolyl)-1,4,7-triazacyclononane, and Me 2 (CHPy 2 )tacn = 1-(di(2-pyridyl)methyl)-4,7-dimethyl-1,4,7-triazacyclononane, Ts = Tosyl). 1(IV)NTs and 2(IV)NTs are rare examples of octahedral iron( iv )–imido complexes and are isoelectronic analogues of the recently described iron( iv )–oxo complexes [Fe IV (O)(L)] 2+ (L = MePy 2 tacn and Me 2 (CHPy 2 )tacn, respectively). 1(IV)NTs and 2(IV)NTs are metastable and have been spectroscopically characterized by HR-MS, UV-vis, 1 H-NMR, resonance Raman, Mössbauer, and X-ray absorption (XAS) spectroscopy as well as by DFT computational methods. Ferric complexes [Fe III (HNTs)(L)] 2+ , 1(III)–NHTs (L = MePy 2 tacn) and 2(III)–NHTs (L = Me 2 (CHPy 2 )tacn) have been isolated after the decay of 1(IV)NTs and 2(IV)NTs in solution, spectroscopically characterized, and the molecular structure of [Fe III (HNTs)(MePy 2 tacn)](SbF 6 ) 2 determined by single crystal X-ray diffraction. Reaction of 1(IV)NTs and 2(IV)NTs with differentmore »p -substituted thioanisoles results in the transfer of the tosylimido moiety to the sulphur atom producing sulfilimine products. In these reactions, 1(IV)NTs and 2(IV)NTs behave as single electron oxidants and Hammett analyses of reaction rates evidence that tosylimido transfer is more sensitive than oxo transfer to charge effects. In addition, reaction of 1(IV)NTs and 2(IV)NTs with hydrocarbons containing weak C–H bonds results in the formation of 1(III)–NHTs and 2(III)–NHTs respectively, along with the oxidized substrate. Kinetic analyses indicate that reactions proceed via a mechanistically unusual HAT reaction, where an association complex precedes hydrogen abstraction.« less
  3. Studies of the coordination chemistry between the diphenylamide ligand, NPh 2 , and the smaller rare-earth Ln III ions, Ln = Y, Dy, and Er, led to the structural characterization by single-crystal X-ray diffraction crystallography of both solvated and unsolvated complexes, namely, tris(diphenylamido-κ N )bis(tetrahydrofuran-κ O )yttrium(III), Y(NPh 2 ) 3 (THF) 2 or [Y(C 12 H 10 N) 3 (C 4 H 8 O) 2 ], 1-Y , and the erbium(III) (Er), 1-Er , analogue, and bis[μ-1κ N :2(η 6 )-diphenylamido]bis[bis(diphenylamido-κ N )yttrium(III)], [(Ph 2 N) 2 Y(μ-NPh 2 )] 2 or [Y 2 (C 12 H 10 N) 6 ], 2-Y , and the dysprosium(III) (Dy), 2-Dy , analogue. The THF ligands of 1-Er are modeled with disorder across two positions with occupancies of 0.627 (12):0.323 (12) and 0.633 (7):0.367 (7). Also structurally characterized was the tetrametallic Er III bridging oxide hydrolysis product, bis(μ-diphenylamido-κ 2 N : N )bis[μ-1κ N :2(η 6 )-diphenylamido]tetrakis(diphenylamido-κ N )di-μ 3 -oxido-tetraerbium(III) benzene disolvate, {[(Ph 2 N)Er(μ-NPh 2 )] 4 (μ-O) 2 }·(C 6 H 6 ) 2 or [Er 4 (C 12 H 10 N) 8 O 2 ]·2C 6 H 6 , 3-Er . The 3-Er structure was refined as a three-component twin with occupanciesmore »0.7375:0.2010:0.0615.« less
  4. Bis(benzene-1,2-diolato-κ 2 O , O ′)bis(dimethyl sulfoxide-κ O )titanium(IV), [Ti(C 6 H 4 O 2 ) 2 (C 2 H 6 OS) 2 ], crystallizes with two crystallographically independent molecules in the space group P 2 1 / c emulating orthorhombic Pbca symmetry (β = 90.0445 (9)°]. The two molecules are related by pseudo-glide symmetry, broken by modulation of each one catecholate and dimethyl sulfoxide (DMSO) ligand. Twinning by pseudomerohedry was observed [twin ratio 0.5499 (7):0.4401 (7)]. Complex 3 was obtained by heating of diprotonated titanium tris-catecholate precursor 2 H in DMSO, by formal displacement of a catechol molecule by two DMSO molecules. Complex 3 is just the second heteroleptic, mono-nuclear, neutral bis-catecholate complex with TiO 6 metal coordination, the only other one being its bis-DMF analogue 6 . The two molecules of 3 exhibit a distorted octahedral geometry. The geometry and distortions from ideal symmetry of 3 are discussed and compared to 6 and to cationic tris-catecholate titanium complexes.
  5. null (Ed.)
    The title compound, [Cu 2 (C 19 H 23 N 7 O)(C 2 H 3 O 2 ) 4 ] n , was obtained via reaction of copper(II) acetate with the coordinating ligand, 6-ethoxy- N 2 , N 4 -bis[2-(pyridin-2-yl)ethyl]-1,3,5-triazine-2,4-diamine. The crystallized product adopts the monoclinic P 2 1 / c space group. The metal core exhibits a paddle-wheel structure typical for dicopper tetraacetate units, with triazine and pyridyl nitrogen atoms from different ligands coordinating to the two axial positions of the paddle wheel in an asymmetric manner. This forms a coordination polymer with the segments of the polymer created by the c -glide of the P 2 1 / c setting of the space group. The resulting chains running along the c -axis direction are held together by intramolecular N—H...O hydrogen bonding. These chains are further packed by dispersion forces, producing an extended three-dimensional structure.