skip to main content


Title: Comparison of two Mn IV Mn IV -bis-μ-oxo complexes {[Mn IV (N 4 (6-Me-DPEN))] 2 (μ-O) 2 } 2+ and {[Mn IV (N 4 (6-Me-DPPN))] 2 (μ-O) 2 } 2+
The addition of tert -butyl hydroperoxide ( t BuOOH) to two structurally related Mn II complexes containing N,N -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me-DPEN) and N,N -bis(6-methyl-2-pyridylmethyl)propane-1,2-diamine (6-Me-DPPN) results in the formation of high-valent bis-oxo complexes, namely di-μ-oxido-bis{[ N , N -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine]manganese(II)}( Mn — Mn ) bis(tetraphenylborate) dihydrate, [Mn(C 16 H 22 N 4 ) 2 O 2 ](C 24 H 20 B) 2 ·2H 2 O or {[Mn IV (N 4 (6-Me-DPEN))] 2 ( μ -O) 2 }(2BPh 4 )(2H 2 O) ( 1 ) and di-μ-oxido-bis{[ N , N -bis(6-methyl-2-pyridylmethyl)propane-1,3-diamine]manganese(II)}( Mn — Mn ) bis(tetraphenylborate) diethyl ether disolvate, [Mn(C 17 H 24 N 4 ) 2 O 2 ](C 24 H 20 B) 2 ·2C 4 H 10 O or {[Mn IV (N 4 (6-MeDPPN))] 2 ( μ -O) 2 }(2BPh 4 )(2Et 2 O) ( 2 ). Complexes 1 and 2 both contain the `diamond core' motif found previously in a number of iron, copper, and manganese high-valent bis-oxo compounds. The flexibility in the propyl linker in the ligand scaffold of 2 , as compared to that of the ethyl linker in 1 , results in more elongated Mn—N bonds, as one would expect. The Mn—Mn distances and Mn—O bond lengths support an Mn IV oxidation state assignment for the Mn ions in both 1 and 2 . The angles around the Mn centers are consistent with the local pseudo-octahedral geometry.  more » « less
Award ID(s):
1664682
PAR ID:
10206939
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Acta Crystallographica Section E Crystallographic Communications
Volume:
76
Issue:
7
ISSN:
2056-9890
Page Range / eLocation ID:
1042 to 1046
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The crystal structures of ligand precursor bis(imidazolium) salts 1,1′-methylenebis(3- tert -butylimidazolium) dibromide monohydrate, C 15 H 26 N 4 + ·2Br − ·H 2 O or [ t Bu NHC 2 Me][Br] 2 ·H 2 O, 1,1′-(ethane-1,2-diyl)bis(3- tert -butylimidazolium) dibromide dihydrate, C 16 H 28 N 4 + ·2Br − ·2H 2 O or [ t Bu NHC 2 Et][Br] 2 ·2H 2 O, 1,1′-methylenebis[3-(2,4,6-trimethylphenyl)imidazolium] dibromide dihydrate, C 25 H 30 N 4 2+ ·2Br − ·2H 2 O or [ Mes NHC 2 Me][Br] 2 ·2H 2 O, and 1,1′-(ethane-1,2-diyl)bis[3-(2,4,6-trimethylphenyl)imidazolium] dibromide tetrahydrate, C 26 H 32 N 4 2+ ·2Br − ·4H 2 O or [ Mes NHC 2 Et][Br] 2 ·4H 2 O, are reported. At 293 K, [ t Bu NHC 2 Me][Br] 2 ·H 2 O crystallizes in the P 2 1 / c space group, while [ t Bu NHC 2 Et][Br] 2 ·2H 2 O crystallizes in the P 2 1 / n space group at 100 K. At 112 K, [ Mes NHC 2 Me][Br] 2 ·2H 2 O crystallizes in the orthorhombic space group Pccn while [ Mes NHC 2 Et][Br] 2 ·4H 2 O crystallizes in the P 2 1 / c space group at 100 K. Bond distances and angles within the imidazolium rings are generally comparable among the four structures. All four bis(imidazolium) salts co-crystallize with one to four molecules of water. 
    more » « less
  2. Reactions of the bicompartmental bis(phenolato) compound 6,6′-methylenebis(2-((bis(pyridin-2-ylmethyl)amino)methyl)-4-chlorophenol)hemihydrate (H 2 L ½H 2 O) with 3d metal( ii ) ions afforded novel fully structurally characterized bridged acetato dinuclear complexes [Mn 2 (HL)(μ 1,2 -OAc) 2 ]PF 6 (1) [Zn 2 (HL)(μ 1,2 -OAc)(H 2 O) 0.75 (MeOH) 0.25 ](PF 6 ) 2 ·0.45(H 2 O) (5) and [Cd 2 (HL)(μ 1,1,2 -OAc)(OAc)(H 2 O)]PF 6 ·H 2 O (6) as well as the polymeric bridged-azido tetranuclear catena -[Cu 4 (HL) 2 (μ 1,1 -N 3 ) 2 (μ 1,3 -N 3 ) 2 ](NO 3 ) 2 ·5H 2 O (4). The complex [Cu 4 (HL) 2 (ClO 4 ) 3 (H 2 O) 5 ](ClO 4 ) 3 ·5H 2 O (2) was partially characterized. In addition, three more dinuclear complexes [Cu 2 (H 2 L)(NO 3 ) 2 (H 2 O) 2 ](NO 3 ) 2 (3), [Cu 2 (HL)(OAc)(CH 3 OH)](PF 6 ) 2 (7) and [Cu 2 (HL)(NCS) 2 ]NO 3 ·2H 2 O (8) were also isolated. All complexes were characterized by CHN elemental analysis, IR and UV-Vis spectroscopy, ESI-MS, conductivity measurements and X-ray single crystal crystallography for compounds 1, 4, 5 and 6, where the bis(phenolato) ligand displayed different deprotonation (H 2 L, HL − and L 2− ). The magnetic susceptibility measurements over the temperature range 2–300 K revealed very weak antiferromagnetic coupling in dimanganese( ii ) 1 ( J = −1.64(1) cm −1 ) and almost negligible magnetic interaction in dicopper( ii ) 2 ( J = 0(3) cm −1 ). In the azido catena -[Cu 4 (HL) 2 (μ 1,1 -N 3 ) 2 (μ 1,3 -N 3 ) 2 ](NO 3 ) 2 ·5H 2 O (4) complex, the J value of −133(3) cm −1 was obtained upon moderate-to-strong antiferromagnetic coupling through the di-μ 1,3 -N 3 -bridged dicopper( ii ) unit with no magnetic interaction between the two copper( ii ) ions in the di-μ 1,1 -N 3 -bridged unit. 
    more » « less
  3. The investigation of the coordination chemistry of rare-earth metal complexes with cyanide ligands led to the isolation and crystallographic characterization of the Ln III cyanotriphenylborate complexes dichlorido(cyanotriphenylborato-κ N )tetrakis(tetrahydrofuran-κ O )lanthanide(III), [ Ln Cl 2 (C 19 H 15 BN)(C 4 H 8 O) 4 ] [lanthanide ( Ln ) = dysprosium (Dy) and yttrium Y)] from reactions of LnCl 3 , KCN, and NaBPh 4 . Attempts to independently synthesize the tetraethylammonium salt of (NCBPh 3 ) − from BPh 3 and [NEt 4 ][CN] in THF yielded crystals of the phenyl-substituted cyclic borate, tetraethylazanium 2,2,4,6-tetraphenyl-1,3,5,2λ 4 ,4,6-trioxatriborinan-2-ide, C 8 H 20 N + ·C 24 H 20 B 3 O 3 − or [NEt 4 ][B 3 (μ-O) 3 (C 6 H 5 ) 4 ]. The mechanochemical reaction of BPh 3 and [NEt 4 ][CN] without solvent produced crystals of tetraethylazanium cyanodiphenyl-λ 4 -boranyl diphenylborinate, C 8 H 20 N + ·C 25 H 20 B 2 NO − or [NEt 4 ][NCBPh 2 (μ-O)BPh 2 ]. Reaction of BPh 3 and KCN in THF in the presence of 2.2.2-cryptand (crypt) led to a crystal of bis[(2.2.2-cryptand)potassium] 2,2,4,6-tetraphenyl-1,3,5,2λ 4 ,4,6-trioxatriborinan-2-ide cyanomethyldiphenylborate tetrahydrofuran disolvate, 2C 18 H 36 KN 2 O 6 + ·C 24 H 20 B 3 O 3 − ·C 14 H 13 BN − ·2C 4 H 8 O or [K(crypt)] 2 [B 3 (μ-O) 3 (C 6 H 5 ) 4 ][NCBPh 2 Me]·2THF. The [NCBPh 2 (μ-O)BPh 2 ] 1− and (NCBPh 2 Me) 1− anions have not been structurally characterized previously. The structure of 1-Y was refined as a two-component twin with occupancy factors 0.513 (1) and 0.487 (1). In 4 , one solvent molecule was disordered and included using multiple components with partial site-occupancy factors. 
    more » « less
  4. null (Ed.)
    Studies of the coordination chemistry between the diphenylamide ligand, NPh 2 , and the smaller rare-earth Ln III ions, Ln = Y, Dy, and Er, led to the structural characterization by single-crystal X-ray diffraction crystallography of both solvated and unsolvated complexes, namely, tris(diphenylamido-κ N )bis(tetrahydrofuran-κ O )yttrium(III), Y(NPh 2 ) 3 (THF) 2 or [Y(C 12 H 10 N) 3 (C 4 H 8 O) 2 ], 1-Y , and the erbium(III) (Er), 1-Er , analogue, and bis[μ-1κ N :2(η 6 )-diphenylamido]bis[bis(diphenylamido-κ N )yttrium(III)], [(Ph 2 N) 2 Y(μ-NPh 2 )] 2 or [Y 2 (C 12 H 10 N) 6 ], 2-Y , and the dysprosium(III) (Dy), 2-Dy , analogue. The THF ligands of 1-Er are modeled with disorder across two positions with occupancies of 0.627 (12):0.323 (12) and 0.633 (7):0.367 (7). Also structurally characterized was the tetrametallic Er III bridging oxide hydrolysis product, bis(μ-diphenylamido-κ 2 N : N )bis[μ-1κ N :2(η 6 )-diphenylamido]tetrakis(diphenylamido-κ N )di-μ 3 -oxido-tetraerbium(III) benzene disolvate, {[(Ph 2 N)Er(μ-NPh 2 )] 4 (μ-O) 2 }·(C 6 H 6 ) 2 or [Er 4 (C 12 H 10 N) 8 O 2 ]·2C 6 H 6 , 3-Er . The 3-Er structure was refined as a three-component twin with occupancies 0.7375:0.2010:0.0615. 
    more » « less
  5. Six salts ([Au2(μ-dppe)2](BF4)2·CHCl3, [Au2(μ- dppe)2](BF4)2·1,2-Cl2C2H4, [Au2(μ-dppe)2](PF6)2·CHCl3, [Au2(μ-dppe)2](PF6)2, [Au2(μ-dppe)2](SbF6)2, and [Au2(μ- dppe)2](OTf)2·2CHCl3), (dppe is bis(diphenylphosphine)ethane) containing the dication, [Au2(μ-dppe)2]2+, have been prepared and structurally characterized by single-crystal X-ray crystallography. Unlike the three-coordinate dppe-bridged dimers, Au2X2(μ-dppe)2 (X = Br, I), which show considerable variation in the distance between the gold(I) ions over the range 3.0995(10) to 3.8479(3) Å in various solvates, the structure of the helical dication, [Au2(μ- dppe)2], in the new salts is remarkably consistent with the Au···Au separation falling in the narrow range 2.8787(9) to 2.9593(5) Å. In the solid state, the six crystals display a green luminescence both at room temperature and at 77 K, which has been assigned as phosphorescence. However, solutions of the dication are not luminescent. Salts containing the analogous dication [Au2(μ-dppp)2](PF6)2 (dppp is bis(diphenylphosphine)propane) have been prepared to determine whether the longer bridging ligand might also twist into a helical shape. These salts include [Au2(μ- dppp)2](OTf)2 (OTf is triflate) and three crystalline forms of [Au2(μ-dppp)2](PF6)2: the solvate [Au2(μ-dppp)2](PF6)2·(CHCl3) and two polymorphs of the unsolvated salt. None of these crystals are luminescent, but all contain a similar dication, [Au2(μ- dppp)2]2+, that contains two nearly parallel, linear P−Au−P groups and a long separation between the gold ions that varies from 5.3409(4) to 5.6613(6)Å. 
    more » « less