Abstract The global fish supply chain handles ∼179 million tons of product annually (as in 2018). Transportation and distribution are an important part of fish supply chain, as fish and shellfish are one of the largest globally traded food commodities with a trading value of ∼$153 billion in 2017. Here we show that disregarding the environmental impacts of fish transportation, either land transit or flight, neglects a noteworthy portion of total fish provisioning environmental impacts. We identified that local fish provision, considering (1) all Wisconsin counties as production points, (2) cities of Chicago, Milwaukee, and Minneapolis as consumption points, and (3) effective, semi-effective, and ineffective space heating approaches, has significantly lower environmental impacts than imported fish provision, considering flight transportation from offshore production points. Meaning the necessity to elevate local fish production capacity to enhance the environmental sustainability of fish provision is essential, despite potential elevated heating demands for cold-weather aquaculture.
more »
« less
Comparative environmental impact assessment of aqaufeed production: Sustainability implication of forage fish meal and oil free diets
The environmental sustainability of aquaculture food production systems is of critical concern due to its rapid expansion as the fastest growing major food production sector in the world. Among the parameters that con- tribute to the overall environmental impacts of aquaculture marine-based protein production, aquafeed is identified as an impact hotspot. There is consequently a need to seek more environmentally sustainable aqua- feeds to mitigate the adverse environmental impacts associated with aquaculture food production. The environmental and economic sustainability of aquafeeds can be improved using two main approaches: (a) optimizing finite resources use (e.g. fish meal and fish oil), and (b) mitigating waste generation and emissions. A variety of ingredients have been previously proposed, investigated, and utilized to accomplish these strategies, while maintaining acceptable food production efficiencies. However, comprehensive evaluation of the en- vironmental sustainability of aquafeeds with respect to variable ingredients, both in terms of resource use and waste emission has not been conducted. In this work, a holistic life cycle impact assessment of twelve practically formulated and utilized aquafeeds has been performed to provide a comparative evaluation of different aquafeed's environmental impacts, con- sidering resource use (biotic resource use, water intake, and fossil fuel depletion) and emission-based impact categories (ozone depletion, global warming, photochemical smog, acidification, eutrophication, carcinogenics, non-carcinogenics, respiratory effects, and ecotoxicity). Results indicate that the investigated fish meal free diets do not, on the whole, result in a significant decrease in environmental impacts with respect to the use of biotic resources. However, if the substituted ingredients would not propose elevated impacts (e.g. blood meal), these diets can potentially lower the overall environmental impacts of aquafeed production mainly with respect to relevant emission-based indicators (e.g. global warming, eutrophication, ecotoxicity). Findings demonstrate that the investigated fish oil free diets can potentially lower the use of biotic resources. However, to prevent burden shifting, strategies to provide nutrient-rich oils with minimal energy requirement need to be undertaken.
more »
« less
- Award ID(s):
- 1942110
- PAR ID:
- 10206988
- Date Published:
- Journal Name:
- Resources conservation recycling
- Volume:
- 161
- ISSN:
- 2590-289X
- Page Range / eLocation ID:
- 104849
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The COVID-19 pandemic has reduced travel but led to an increase in household food and energy consumption. Previous studies have explored the changes in household consumption of food and energy during the pandemic; however, the economy-wide environmental implications of these changes have not been investigated. This study addresses the knowledge gap by estimating the life cycle environmental impacts of U.S. households during the pandemic using a hybrid life cycle assessment. The results revealed that the reduction in travel outweighed the increase in household energy consumption, leading to a nationwide decrease in life cycle greenhouse gas emissions (−255 Mton CO2eq), energy use (−4.46 EJ), smog formation (−9.17 Mton O3eq), minerals and metal use (−16.1 Mton), commercial wastes (−8.31 Mton), and acidification (−226 kton SO2eq). However, U.S. households had more life cycle freshwater withdrawals (+8.6 Gton) and slightly higher eutrophication (+0.2%), ozone depletion (+0.7%), and freshwater ecotoxicity (+2.1%) caused by increased household energy and food consumption. This study also demonstrated the environmental trade-offs between decreased food services and increased food consumption at home, resulting in diverse trends for food-related life cycle environmental impacts.more » « less
-
The recent decade has witnessed an increase in irrigated acreage in the southeast United States due to the shift in cropping patterns, climatic conditions, and water availability. Peanut, a major legume crop cultivated in Georgia, Southeast United States, has been a staple food in the American household. Regardless of its significant contribution to the global production of peanuts (fourth largest), studies related to local or regional scale water consumption in peanut production and its significant environmental impacts are scarce. Therefore, the present research contributes to the water footprint of peanut crops in eight counties of Georgia and its potential ecological impacts. The impact categories relative to water consumption (water depletion—green and blue water scarcity) and pesticide use (water degradation—potential freshwater ecotoxicity) using crop-specific characterization factors are estimated for the period 2007 to 2017 at the mid-point level. These impacts are transformed into damages to the area of protection in terms of ecosystem quality at the end-point level. This is the first county-wise quantification of the water footprint and its impact assessment using ISO 14046 framework in the southeast United States. The results suggest inter-county differences in water consumption of crops with higher blue water requirements than green and grey water. According to the water footprint analysis of the peanut crop conducted in this study, additional irrigation is recommended in eight Georgia counties. The mid-point level impact assessment owing to water consumption and pesticide application reveals that the potential freshwater ecotoxicity impacts at the planting and growing stages are higher for chemicals with high characterization factors regardless of lower pesticide application rates. Multiple regression analysis indicates blue water, yield, precipitation, maximum surface temperature, and growing degree days are the potential factors influencing freshwater ecotoxicity impacts. Accordingly, a possible impact pathway of freshwater ecotoxicity connecting the inventory flows and the ecosystem quality is defined. This analysis is helpful in the comparative environmental impact assessments for other major crops in Georgia and aids in water resource management decisions. The results from the study could be of great relevance to the southeast United States, as well as other regions with similar climatic zones and land use patterns. The assessment of water use impacts relative to resource availability can assist farmers in determining the timing and layout of crop planting.more » « less
-
Abstract One of the primary sustainability challenges in aquaculture is replacing fish meal with plant‐based ingredients in aquafeeds. Plants are not optimal due to low protein content and antinutritional factors which can cause gut dysbiosis. Duckweed (Lemnaceae) is a family of aquatic plants with high protein content and has been used successfully for various types of animal feeds. In this systematic review and meta‐analysis of 58 papers, we summarize the extent by which duckweed has been used in fish production including the species of fish tested, the grow‐out stage of fish, and method of application. Duckweed studies spanned a total of 18 species of fish (16 freshwater and two marine) that collectively are valued at 263 billion USD annually, and comprise 28% of total aquaculture production by mass. The average experiment length was 72 days (SD 42), primarily at the fingerling life stage. Duckweed was fed to the fish through live grazing, dried, and pelleted forms with 20% inclusion as the most common formulation. TheLemnaspp., dominated byL.minor,L.gibba, and unknownLemnaspecies, were the most commonly used for feeds.Spirodela polyrhizawas the second most common. Duckweed inclusion levels between 15% and 30% were associated with positive outcomes on fish growth and feed conversion ratio without any negative impact on survival rates. Most duckweed species, especially fromWollfiellahave not been tested as a fish feed but should be explored whereas most studies focused on freshwater fishes rather than marine.more » « less
-
Virtual water describes water embedded in the production of goods and offers meaningful insights about the complex interplay between water, trade, and sustainability. In this Review, we examine the trends, major players, traded products, and key drivers of virtual water trade (VWT). Roughly 20% of water used in global food production is traded virtually rather than domestically consumed. As such, agriculture dominates VWT, with livestock products, wheat, maize, soybean, oil palm, coffee, and cocoa contributing over 70% of total VWT. These products are also driving VWT growth, the volume of which has increased 2.9 times from 1986 to 2022. However, the countries leading VWT contributions (with China, the United States, the Netherlands, Germany, and India, accounting for 34% of the global VWT in 2022) have remained relatively stable over time, albeit with China becoming an increasingly important importer. VWT can mitigate the effects of water scarcity and food insecurity, although there are concerns about the disconnect between consumers and the environmental impacts of their choices, and unsustainable resource exploitation. Indeed, approximately 16% of unsustainable water use and 11% of global groundwater depletion are virtually traded. Future VWT analyses must consider factors such as water renewability, water quality, climate change impacts, and socio-economic implications.more » « less
An official website of the United States government

