Zearalenone (ZEA) is a mycotoxin, commonly found in agricultural products, linked to adverse health impacts in humans and livestock. However, less is known regarding effects on fish as both ecological receptors and economically relevant “receptors” through contamination of aquaculture feeds. In the present study, a metabolomics approach utilizing high-resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) was applied to intact embryos of zebrafish (Danio rerio), and two marine fish species, olive flounder (Paralichthys olivaceus) and yellowtail snapper (Ocyurus chrysurus), to investigate the biochemical pathways altered by ZEA exposure. Following the assessment of embryotoxicity, metabolic profiling of embryos exposed to sub-lethal concentrations showed significant overlap between the three species and, specifically, identified metabolites linked to hepatocytes, oxidative stress, membrane disruption, mitochondrial dysfunction, and impaired energy metabolism. These findings were further supported by analyses of tissue-specific production of reactive oxygen species (ROS) and lipidomics profiling and enabled an integrated model of ZEA toxicity in the early life stages of marine and freshwater fish species. The metabolic pathways and targets identified may, furthermore, serve as potential biomarkers for monitoring ZEA exposure and effects in fish in relation to ecotoxicology and aquaculture.
This content will become publicly available on June 1, 2025
One of the primary sustainability challenges in aquaculture is replacing fish meal with plant‐based ingredients in aquafeeds. Plants are not optimal due to low protein content and antinutritional factors which can cause gut dysbiosis. Duckweed (
- Award ID(s):
- 2011004
- NSF-PAR ID:
- 10521751
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Reviews in Aquaculture
- Volume:
- 16
- Issue:
- 3
- ISSN:
- 1753-5123
- Page Range / eLocation ID:
- 1212 to 1228
- Subject(s) / Keyword(s):
- aquaculture, duckweed, fish feeds, Lemnaceae, plant based, sustainable
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract As the fastest growing food production sector in the world, aquaculture may become an important source of nitrous oxide (N2O)—a potent greenhouse gas and the dominant source of ozone-depleting substances in the stratosphere. China is the largest aquaculture producer globally; however, the magnitude of N2O emission from Chinese aquaculture systems (CASs) has not yet been extensively investigated. Here, we quantified N2O emission from the CASs since the Reform and Opening-up (1979–2019) at the species-, provincial-, and national-levels using annual aquaculture production data, based on nitrogen (N) levels in feed type, feed amount, feed conversion ratio, and emission factor (EF). Our estimate indicates that over the past 41 years, N2O emission from CASs has increased approximately 25 times from 0.67 ± 0.04 GgN in 1979 to 16.69 ± 0.31 GgN in 2019. Freshwater fish farming, primarily in two provinces, namely, Guangdong and Hubei, where intensive freshwater fish farming has been adopted in the past decades, accounted for approximately 89% of this emission increase. We also calculated the EF for each species, ranging from 0.79 ± 0.23 g N2O kg−1animal to 2.41 ± 0.14 g N2O kg−1animal. The results of this study suggest that selecting low-EF species and improving feed use efficiency can help reduce aquaculture N2O emission for building a climate-resilient sustainable aquaculture.
-
Abstract The global population urgently requires alternative food sources that provide the micronutrient-rich profile of meat and fish but with lower environmental cost. We present a solution in the form of ‘Naked Clams’ (teredinids/shipworms) - a seldom researched group of bivalves, that feature tiny shells and live in and feed on wood, turning it into protein and essential nutrients. We report the first pilot system for Naked Clam aquaculture, the first nutritional profile and feeding efficacy assessment, and demonstrate value offered by microencapsulated feeds in fortifying Naked Clams. Naked Clams were rich in nutrients including vitamin B12and monounsaturated fatty acids, and shared the high protein content of conventional bivalves such as blue mussels (
Mytilus edulis ). Microencapsulated algal feeds enriched the Naked Clams with essential PUFAs including EPA and DHA, with potential for further tailoring. Additional work is required, but this study represents a gateway to a new form of sustainable food production. -
Abstract The evolutionary direction of gonochorism and hermaphroditism is an intriguing mystery to be solved. The special transient hermaphroditic stage makes the little yellow croaker (
Larimichthys polyactis ) an appealing model for studying hermaphrodite formation. However, the origin and evolutionary relationship between ofL. polyactis andLarimichthys crocea , the most famous commercial fish species in East Asia, remain unclear. Here, we report the sequence of theL. polyactis genome, which we found is ~706 Mb long (contig N50 = 1.21 Mb and scaffold N50 = 4.52 Mb) and contains 25,233 protein‐coding genes. Phylogenomic analysis suggested thatL. polyactis diverged from the common ancestor,L. crocea , approximately 25.4 million years ago. Our high‐quality genome assembly enabled comparative genomic analysis, which revealed several within‐chromosome rearrangements and translocations, without major chromosome fission or fusion events between the two species. Thedmrt1 gene was identified as the male‐specific gene inL. polyactis . Transcriptome analysis showed that the expression ofdmrt1 and its upstream regulatory gene (rnf183 ) were both sexually dimorphic.Rnf183 , unlike its two paraloguesrnf223 andrnf225 , is only present inLarimichthys andLates but not in other teleost species, suggesting that it originated from lineage‐specific duplication or was lost in other teleosts. Phylogenetic analysis shows that the hermaphrodite stage in maleL. polyactis may be explained by the sequence evolution ofdmrt1 . Decoding theL. polyactis genome not only provides insight into the genetic underpinnings of hermaphrodite evolution, but also provides valuable information for enhancing fish aquaculture. -
Rudi, Knut (Ed.)ABSTRACT Marine herbivorous fish that feed primarily on macroalgae, such as those from the genus Kyphosus, are essential for maintaining coral health and abundance on tropical reefs. Here, deep metagenomic sequencing and assembly of gut compartment-specific samples from three sympatric, macroalgivorous Hawaiian kyphosid species have been used to connect host gut microbial taxa with predicted protein functional capacities likely to contribute to efficient macroalgal digestion. Bacterial community compositions, algal dietary sources, and predicted enzyme functionalities were analyzed in parallel for 16 metagenomes spanning the mid- and hindgut digestive regions of wild-caught fishes. Gene colocalization patterns of expanded carbohydrate (CAZy) and sulfatase (SulfAtlas) digestive enzyme families on assembled contigs were used to identify likely polysaccharide utilization locus associations and to visualize potential cooperative networks of extracellularly exported proteins targeting complex sulfated polysaccharides. These insights into the gut microbiota of herbivorous marine fish and their functional capabilities improve our understanding of the enzymes and microorganisms involved in digesting complex macroalgal sulfated polysaccharides. IMPORTANCE This work connects specific uncultured bacterial taxa with distinct polysaccharide digestion capabilities lacking in their marine vertebrate hosts, providing fresh insights into poorly understood processes for deconstructing complex sulfated polysaccharides and potential evolutionary mechanisms for microbial acquisition of expanded macroalgal utilization gene functions. Several thousand new marine-specific candidate enzyme sequences for polysaccharide utilization have been identified. These data provide foundational resources for future investigations into suppression of coral reef macroalgal overgrowth, fish host physiology, the use of macroalgal feedstocks in terrestrial and aquaculture animal feeds, and the bioconversion of macroalgae biomass into value-added commercial fuel and chemical products.more » « less