Lithium-ion batteries almost exclusively power today’s electric vehicles (EVs). Cutting battery costs is crucial to the promotion of EVs. This paper aims to develop potential solutions to lower the cost and improve battery performance by investigating its design variables: positive electrode porosity and thickness. The open-access lithium-ion battery design and cost model (BatPac) from the Argonne National Laboratory of the United States Department of Energy, has been used for the analyses. Six pouch battery systems with different positive materials are compared in this study (LMO, LFP, NMC 532/LMO, NMC 622, NMC 811, and NCA). Despite their higher positive active material price, nickel-rich batteries (NMC 622, NMC 811, and NCA) present a cheaper total pack cost per kilowatt-hour than other batteries. The higher thickness and lower porosity can reduce the battery cost, enhance the specific energy, lower the battery mass but increase the performance instability. The reliability of the results in this study is proven by comparing estimated and actual commercial EV battery parameters. In addition to the positive electrode thickness and porosity, six other factors that affect the battery's cost and performance have been discussed. They include energy storage, negative electrode porosity, separator thickness and porosity, and negative and positive current collector thickness.
more »
« less
Measuring effective stiffness of Li-ion batteries via acoustic signal processing
In this work we build upon acoustic–electrochemical correlations to investigate the relationships between sound wave structure and chemo-mechanical properties of a pouch cell battery. Cell thickness imaging and wave detection during pouch cell cycling are conducted in parallel. Improved acoustic hardware and signal processing are used to validate the direct measurement of material stiffness, which is an intrinsic physical property. Measurement of cell thickness to micron resolution and wave transmit time to nanosecond resolution in a temperature and pressure controlled acoustic rig allows for estimation of the effective stiffness. We further explore the effects of material type and cell layering on the acoustic signal, demonstrating that the operando acoustic method can accurately measure the changes in physical state properties of a battery with high dynamic temporal and spatial range.
more »
« less
- Award ID(s):
- 1531871
- PAR ID:
- 10207050
- Date Published:
- Journal Name:
- Journal of Materials Chemistry A
- Volume:
- 8
- Issue:
- 32
- ISSN:
- 2050-7488
- Page Range / eLocation ID:
- 16624 to 16635
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Elastography refers to mapping mechanical properties in a material based on measuring wave motion in it using noninvasive optical, acoustic or magnetic resonance imaging methods. For example, increased stiffness will increase wavelength. Stiffness and viscosity can depend on both location and direction. A material with aligned fibers or layers may have different stiffness and viscosity values along the fibers or layers versus across them. Converting wave measurements into a mechanical property map or image is known as reconstruction. To make the reconstruction problem analytically tractable, isotropy and homogeneity are often assumed, and the effects of finite boundaries are ignored. But, infinite isotropic homogeneity is not the situation in most cases of interest, when there are pathological conditions, material faults or hidden anomalies that are not uniformly distributed in fibrous or layered structures of finite dimension. Introduction of anisotropy, inhomogeneity and finite boundaries complicates the analysis forcing the abandonment of analytically-driven strategies, in favor of numerical approximations that may be computationally expensive and yield less physical insight. A new strategy, Transformation Elastography (TE), is proposed that involves spatial distortion in order to make an anisotropic problem become isotropic. The fundamental underpinnings of TE have been proven in forward simulation problems. In the present paper a TE approach to inversion and reconstruction is introduced and validated based on numerical finite element simulations.more » « less
-
Abstract Understanding the physical and chemical response of materials to impulsive deformation is crucial for applications ranging from soft robotic locomotion to space exploration to seismology. However, investigating material properties at extreme strain rates remains challenging due to temporal and spatial resolution limitations. Combining high-strain-rate testing with mechanochemistry encodes the molecular-level deformation within the material itself, thus enabling the direct quantification of the material response. Here, we demonstrate a mechanophore-functionalized block copolymer that self-reports energy dissipation mechanisms, such as bond rupture and acoustic wave dissipation, in response to high-strain-rate impacts. A microprojectile accelerated towards the polymer permanently deforms the material at a shallow depth. At intersonic velocities, the polymer reports significant subsurface energy absorption due to shockwave attenuation, a mechanism traditionally considered negligible compared to plasticity and not well explored in polymers. The acoustic wave velocity of the material is directly recovered from the mechanochemically-activated subsurface volume recorded in the material, which is validated by simulations, theory, and acoustic measurements. This integration of mechanochemistry with microballistic testing enables characterization of high-strain-rate mechanical properties and elucidates important insights applicable to nanomaterials, particle-reinforced composites, and biocompatible polymers.more » « less
-
Although reliable rechargeable batteries represent a key transformative technology for electric vehicles, portable electronics, and renewable energy, there are few nondestructive diagnostic techniques compatible with realistic commercial cell enclosures. Many battery failures result from the loss or chemical degradation of electrolyte. In this work, we present measurements through battery enclosures that allow quantification of electrolyte amount and composition. The study employs instrumentation and techniques developed in the context of zero-to-ultralow-field nuclear magnetic resonance (ZULF NMR), with optical atomic magnetometers as the detection elements. In contrast to conventional NMR methodology, which suffers from skin-depth limitations, the reduced resonance frequencies in ZULF NMR make battery housing and electrodes transparent to the electromagnetic fields involved. As demonstrated here through simulation and experiment, both the solvent and lithium-salt components of the electrolyte (LiPF6) signature could be quantified using our techniques. Further, we show that the apparatus is compatible with measurement of pouch-cell batteries.more » « less
-
We investigated surface acoustic wave (SAW) propagation and lattice vibrations in two-dimensional (2D) titanium carbide MXene films as a function of surface termination and layer stacking, using atomistic simulations. We found that SAW propagation velocity is highly sensitive to both single-layer properties and interlayer bonding. Surface terminations significantly modulate wave behavior, with oxygen and fluorine terminations producing distinct effects on wave propagation, with oxygen-terminated monolayers exhibiting 20% higher wave speeds than fluorine counterparts due to strengthened intralayer bonds. Key observations include the transition from one to two layers causing wave speed variations, and the development of interlayer modes that generate more dispersed lattice vibrations. As the film layer thickness increases, SAW propagation becomes predominantly confined to the upper surface, with coherence of vibrational modes diminishing in multilayer structures. These findings suggest MXene terminations and layer stacking are crucial parameters for controlling SAW behavior, offering promising avenues for novel acoustic wave device applications. Published by the American Physical Society2025more » « less
An official website of the United States government

