skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 3D diffractive imaging of nanoparticle ensembles using an x-ray laser
Single particle imaging at x-ray free electron lasers (XFELs) has the potential to determine the structure and dynamics of single biomolecules at room temperature. Two major hurdles have prevented this potential from being reached, namely, the collection of sufficient high-quality diffraction patterns and robust computational purification to overcome structural heterogeneity. We report the breaking of both of these barriers using gold nanoparticle test samples, recording around 10 million diffraction patterns at the European XFEL and structurally and orientationally sorting the patterns to obtain better than 3-nm-resolution 3D reconstructions for each of four samples. With these new developments, integrating advancements in x-ray sources, fast-framing detectors, efficient sample delivery, and data analysis algorithms, we illuminate the path towards sub-nanometer biomolecular imaging. The methods developed here can also be extended to characterize ensembles that are inherently diverse to obtain their full structural landscape.  more » « less
Award ID(s):
1943448 1231306
PAR ID:
10207183
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optica
Volume:
8
Issue:
1
ISSN:
2334-2536
Format(s):
Medium: X Size: Article No. 15
Size(s):
Article No. 15
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The emergence of high repetition-rate X-ray free-electron lasers (XFELs) powered by superconducting accelerator technology enables the measurement of significantly more experimental data per day than was previously possible. The European XFEL is expected to provide 27,000 pulses per second, over two orders of magnitude more than any other XFEL. The increased pulse rate is a key enabling factor for single-particle X-ray diffractive imaging, which relies on averaging the weak diffraction signal from single biological particles. Taking full advantage of this new capability requires that all experimental steps, from sample preparation and delivery to the acquisition of diffraction patterns, are compatible with the increased pulse repetition rate. Here, we show that single-particle imaging can be performed using X-ray pulses at megahertz repetition rates. The results obtained pave the way towards exploiting high repetition-rate X-ray free-electron lasers for single-particle imaging at their full repetition rate. 
    more » « less
  2. The outcomes and timescales of molecular nonadiabatic dynamics are decisively impacted by the quantum coherences generated at localized molecular regions. In time-resolved X-ray diffraction imaging, these coherences create distinct signatures via inelastic photon scattering, but they are buried under much stronger background elastic features. Here, we exploit the rich dynamical information encoded in the inelastic patterns, which we reveal by frequency-dispersed covariance ultrafast powder X-ray diffraction of stochastic X-ray free-electron laser pulses. This is demonstrated for the photoisomerization of azobenzene involving the passage through a conical intersection, where the nuclear wave packet branches and explores different quantum pathways. Snapshots of the coherence dynamics are obtained at high frequency shifts, not accessible with conventional diffraction measurements. These provide access to the timing and to the confined spatial distribution of the valence electrons directly involved in the conical intersection passage. This study can be extended to full three-dimensional imaging of conical intersections with ultrafast X-ray and electron diffraction. 
    more » « less
  3. The structural, magnetic and magnetocaloric properties of Fe deficient Pr2-xNdxFe17 (x = 0.5, 0.7) alloys prepared by arc-melting and melt-spinning have been investigated. The room temperature x-ray diffraction patterns show that the samples are nearly single-phase and crystallize in the rhombohedral Th2Zn17-type crystal structure. The Curie temperatures determined from the thermomagnetic curves are 302 K and 307 K for Pr1.5Nd0.5Fe17 and Pr1.3Nd0.7Fe17, respectively. The peak magnetic entropy change and the relative cooling power at field change of 50 kOe are 3.01 J/kgK and 345 J/kg for Pr1.5Nd0.5Fe17, and 4.31 J/kgK and 487 J/kg for Pr1.3Nd0.7Fe17, respectively. The absence of magnetic and thermal hysteresis with relatively high cooling efficiency suggests that the alloys have potential for magnetic refrigeration. 
    more » « less
  4. Abstract Single Particle Imaging (SPI) with intense coherent X-ray pulses from X-ray free-electron lasers (XFELs) has the potential to produce molecular structures without the need for crystallization or freezing. Here we present a dataset of 285,944 diffraction patterns from aerosolized Coliphage PR772 virus particles injected into the femtosecond X-ray pulses of the Linac Coherent Light Source (LCLS). Additional exposures with background information are also deposited. The diffraction data were collected at the Atomic, Molecular and Optical Science Instrument (AMO) of the LCLS in 4 experimental beam times during a period of four years. The photon energy was either 1.2 or 1.7 keV and the pulse energy was between 2 and 4 mJ in a focal spot of about 1.3μm x 1.7μm full width at half maximum (FWHM). The X-ray laser pulses captured the particles in random orientations. The data offer insight into aerosolised virus particles in the gas phase, contain information relevant to improving experimental parameters, and provide a basis for developing algorithms for image analysis and reconstruction. 
    more » « less
  5. A promising new route for structural biology is single-particle imaging with an X-ray Free-Electron Laser (XFEL). This method has the advantage that the samples do not require crystallization and can be examined at room temperature. However, high-resolution structures can only be obtained from a sufficiently large number of diffraction patterns of individual molecules, so-called single particles. Here, we present a method that allows for efficient identification of single particles in very large XFEL datasets, operates at low signal levels, and is tolerant to background. This method uses supervised Geometric Machine Learning (GML) to extract low-dimensional feature vectors from a training dataset, fuse test datasets into the feature space of training datasets, and separate the data into binary distributions of “single particles” and “non-single particles.” As a proof of principle, we tested simulated and experimental datasets of the Coliphage PR772 virus. We created a training dataset and classified three types of test datasets: First, a noise-free simulated test dataset, which gave near perfect separation. Second, simulated test datasets that were modified to reflect different levels of photon counts and background noise. These modified datasets were used to quantify the predictive limits of our approach. Third, an experimental dataset collected at the Stanford Linear Accelerator Center. The single-particle identification for this experimental dataset was compared with previously published results and it was found that GML covers a wide photon-count range, outperforming other single-particle identification methods. Moreover, a major advantage of GML is its ability to retrieve single particles in the presence of structural variability. 
    more » « less