skip to main content

Title: Experimental and theoretical P-V-T equation of state for Os 2 B 3
Thermoelastic behavior of transition metal boride Os2B3 was studied under quasi-hydrostatic and isothermal conditions in a Paris-Edinburgh cell to 5.4 GPa and 1273 K. In-situ Energy Dispersive X-ray diffraction was used to determine interplanar spacings of the hexagonal crystal structure and thus the volume and axial compression. P-V-T data were fitted to a 3rd Order Birch-Murnaghan equation of state with a temperature modification to determine thermal elastic constants. The bulk modulus was shown to be K0 = 402 ± 21 GPa when the first pressure derivative was held to K0’ = 4.0 from the room temperature P-V curve. Under a quadratic fit α=α_0+α_1 T-α_2 T^(-2), the thermal expansion coefficients were determined to be α_0=1.862×10^(-5) K-1, α_1=0.841×10^(-9) K-2, and α_2=-0.525 K. Density functional theory (DFT) with the quasi-harmonic approximation (QHA) were further employed to study Os2B3, including its P-V-T curves, phonon spectra, bulk modulus, specific heat, thermal expansion, and the Grüneisen parameter. A good agreement between the first-principle theory and experimental observations was achieved, highlighting the success of the Armiento-Mattsson 2005 generalized gradient approximation functional employed in this study and QHA for describing thermodynamic properties of Os2B3.
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
High Pressure Research
Page Range or eLocation-ID:
1 to 12
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigated the structure, equation of state, thermodynamics, and elastic properties of tremolite amphibole [Ca2Mg5Si8O22(OH)2] up to 10 GPa and 2000 K, using first principles simulations based on density functional perturbation theory. We found that at 300 K, the pressure-volume results can be adequately described by a third-order Birch-Murnaghan equation of state with bulk moduli K0 of 78.5 and 66.3 GPa based on local density approximation (LDA) and generalized gradient approximation (GGA), respectively. We also derived its coefficients of the elastic tensor based on LDA and GGA and found that the LDA result is in good agreement with the experimental results. At 300 K, the shear modulus G0 is 58.0 GPa based on LDA. The pressure derivative of the bulk modulus K′ is 5.9, while that of the shear modulus G′ is 1.3. The second Grüneisen parameter, or δT = [–1/(αKT)](∂KT/∂T)P, is 3.3 based on LDA. We found that at ambient conditions, tremolite is elastically anisotropic with the compressional wave velocity anisotropy AVP being 34.6% and the shear wave velocity anisotropy AVS being 27.5%. At higher pressure corresponding to the thermodynamic stability of tremolite, i.e., ~3 GPa, the AVP reduces to 29.5%, whereas AVS increases to 30.8%. To evaluatemore »whether the presence of hydrous phases such as amphibole and phlogopite could account for the observed shear wave velocity (VS) anomaly at the mid-lithospheric discontinuity (MLD), we used the thermoelasticities of tremolite (as a proxy for other amphiboles), phlogopite, and major mantle minerals to construct synthetic velocity profiles. We noted that at depths corresponding to the mid-lithosphere, the presence of 25 vol% amphibole and 1 vol% phlogopite could account for a VS reduction of 2.3%. Thus based on our thermoelasticity results on tremolite amphibole, it seems that mantle metasomatism could partly explain the MLD.« less
  2. An emerging class of superhard materials for extreme environment applications are compounds formed by heavy transition metals with light elements. In this work, ultrahigh pressure experiments on transition metal rhenium diboride (ReB2) were carried out in a diamond anvil cell under isothermal and non-hydrostatic compression. Two independent high-pressure experiments were carried out on ReB2 for the first time up to a pressure of 241 GPa (volume compression V/V0 = 0.731 ± 0.004), with platinum as an internal pressure standard in X-ray diffraction studies. The hexagonal phase of ReB2 was stable under highest pressure, and the anisotropy between the a-axis and c-axis compression increases with pressure to 241 GPa. The measured equation of state (EOS) above the yield stress of ReB2 is well represented by the bulk modulus K0 = 364 GPa and its first pressure derivative K0´ = 3.53. Corresponding density-functional-theory (DFT) simulations of the EOS and elastic constants agreed well with the experimental data. DFT results indicated that ReB2 becomes more ductile with enhanced tendency towards metallic bonding under compression. The DFT results also showed strong crystal anisotropy up to the maximum pressure under study. The pressure-enhanced electron density distribution along the Re and B bond direction renders themore »material highly incompressible along the c-axis. Our study helps to establish the fundamental basis for anisotropic compression of ReB2 under ultrahigh pressures.« less
  3. High pressure study on ultra-hard transition-metal boride Os2B3 was carried out in a diamond anvil cell under isothermal and non-hydrostatic compression with platinum as an X-ray pressure standard. The ambient-pressure hexagonal phase of Os2B3 is found to be stable with a volume compression V/V0 = 0.670 ± 0.009 at the maximum pressure of 358 ± 7 GPa. Anisotropic compression behavior is observed in Os2B3 to the highest pressure, with the c-axis being the least compressible. The measured equation of state using the 3rd-order Birch-Murnaghan fit reveals a bulk modulus K0= 397 GPa and its first pressure derivative K0'= 4.0. The experimental lattice parameters and bulk modulus at ambient conditions also agree well with our density-functional-theory (DFT) calculations within an error margin of ~1%. DFT results indicate that Os2B3 becomes more ductile under compression, with a strong anisotropy in the axial bulk modulus persisting to the highest pressure. DFT further enables the studies of charge distribution and electronic structure at high pressure. The pressure-enhanced electron density and repulsion along the Os and B bonds result in a high incompressibility along the crystal c-axis. Our work helps to elucidate the fundamental properties of Os2B3 under ultrahigh pressure for potential applications in extrememore »environments.« less
  4. Abstract Calcium carbonate (CaCO3) is one of the most abundant carbonates on Earth's surface and transports carbon to Earth's interior via subduction. Although some petrological observations support the preservation of CaCO3 in cold slabs to lower mantle depths, the geophysical properties and stability of CaCO3 at these depths are not known, due in part to complicated polymorphic phase transitions and lack of constraints on thermodynamic properties. Here we measured thermal equation of state of CaCO3-Pmmn, the stable polymorph of CaCO3 through much of the lower mantle, using synchrotron X-ray diffraction in a laser-heated diamond-anvil cell up to 75 GPa and 2200 K. The room-temperature compression data for CaCO3-Pmmn are fit with third-order Birch-Murnaghan equation of state, yielding KT0 = 146.7 (±1.9) GPa and K′0 = 3.4(±0.1) with V0 fixed to the value determined by ab initio calculation, 97.76 Å3. High-temperature compression data are consistent with zero-pressure thermal expansion αT = a0 + a1T with a0 = 4.3(±0.3)×10-5 K-1, a1 = 0.8(±0.2)×10-8 K-2, temperature derivative of the bulk modulus (∂KT/∂T)P = –0.021(±0.001) GPa/K; the Grüneisen parameter γ0 = 1.94(±0.02), and the volume independent constant q = 1.9(±0.3) at a fixed Debye temperature θ0 = 631 K predicted via ab initio calculation.more »Using these newly determined thermodynamic parameters, the density and bulk sound velocity of CaCO3-Pmmn and (Ca,Mg)-carbonate-bearing eclogite are quantitatively modeled from 30 to 80 GPa along a cold slab geotherm. With the assumption that carbonates are homogeneously mixed into the slab, the results indicate the presence of carbonates in the subducted slab is unlikely to be detected by seismic observations, and the buoyancy provided by carbonates has a negligible effect on slab dynamics.« less
  5. The compression behavior of the hexagonal AlB2 phase of Hafnium Diboride (HfB2) was studied in a diamond anvil cell to a pressure of 208 GPa by axial X-ray diffraction employing platinum as an internal pressure standard. The deformation behavior of HfB2 was studied by radial X-ray diffraction technique to 50 GPa, which allows for measurement of maximum differential stress or compressive yield strength at high pressures. The hydrostatic compression curve deduced from radial X-ray diffraction measurements yielded an ambient-pressure volume V0 = 29.73 Å3/atom and a bulk modulus K0 = 282 GPa. Density functional theory calculations showed ambient-pressure volume V0 = 29.84 Å3/atom and bulk modulus K0 = 262 GPa, which are in good agreement with the hydrostatic experimental values. The measured compressive yield strength approaches 3% of the shear modulus at a pressure of 50 GPa. The theoretical strain-stress calculation shows a maximum shear stress τmax~39 GPa along the (1−10) [110] direction of the hexagonal lattice of HfB2, which thereby can be an incompressible high strength material for extreme-environment applications.