skip to main content


Title: WIP: Online Tutorials to Help Undergraduates Bridge the Gap Between General Writing and Engineering Writing
The demands of engineering writing are much different from those of general writing, which students study from grade school through first-year composition. First, the content of engineering writing is both more specific and more complex [1]. As a second difference, not only do the types of audiences vary more in engineering but so does the audience’s level of knowledge about the content. Yet a third difference is that the expected level of precision in engineering writing is much higher [2]. Still a fourth difference is that the formats for engineering reports, which call for writing in sections and for incorporating illustrations and equations, are much more detailed than the double-space essays of first-year composition. Because many engineering students do not take a technical writing course until their junior or senior year, a gap exists between what undergraduates have learned to do in general writing courses and what those students are expected to produce in design courses and laboratory courses. While some engineering colleges such as the University of Michigan have bridged the gap with instruction about engineering writing in first-year design, a few such as the University of Wisconsin-Madison have done so with first-year English [4]. Still, a third group of schools such as Purdue have done so using an integration of these courses [5]. Unfortunately, many other engineering colleges have not bridged the gap in the first year. For instance, at Penn State, first-year design is not an option for teaching engineering writing because this course spans only one semester course and has no room for another major instructional topic. In addition, at this same institution, first-year composition is not an option because the English Department is adamant about having that course’s scope remain on general writing. Although a technical writing course in the junior or senior year should theoretically bridge the gap, not understanding the differences between general writing and engineering writing poses problems for engineering students who have yet taken technical writing. For instance, not understanding the organization of an engineering report can significantly pull down a report’s grade and lead students to assume that they are inherently weak at engineering writing [6]. Another problem is that engineering students who have not bridged the gap between general writing and engineering writing are at a disadvantage when writing emails and reports during a summer internship. To bridge this gap, we have created an online resource [7] that teaches students the essential differences between general writing and the writing done by engineers. At the heart of the resource are two web pages—one on writing reports and the other on writing professional emails. Each page consists of a series of short films that provide the essential differences between the two types of writing and a quiz to ensure comprehension of the films. In addition, students have links to model documents, while faculty have links to lesson plans. Using an NSF I-Corps approach [8], which is an educational version of how to build a start-up company [9], we have developed our web resource over the past six months. Specifically, we have tested value propositions through customer interviews of faculty and students in first-year courses in which the resource has been piloted. Using the results of those customer interviews, we have revised our two web pages. This paper presents the following highlights of this effort: (1) our customer discoveries about the gap between general writing and engineering writing, (2) the corresponding pivots that we made in the online resource to respond to those discoveries, and (3) the website usage statistics that show the effects of making those pivots  more » « less
Award ID(s):
1752096
NSF-PAR ID:
10207519
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
WIP: Online Tutorials to Help Undergraduates Bridge the Gap Between General Writing and Engineering Writing
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABET lists the ability to communicate in writing to both technical and non-technical audiences as a required outcome for baccalaureate engineering students [1]. From emails and memos to formal reports, the ability to communicate is vital to the engineering profession. This Work in Progress paper describes research being done as part of an NSF-funded project, Writing Assignment Tutor Training in STEM (WATTS). The method is designed to improve feedback writing tutors without technical backgrounds give to engineering students on technical reports. Students in engineering programs have few opportunities to develop their writing skills. Usually, composition courses are part of the general education curriculum. Students often see these courses as unrelated to their majors and careers [2]. Ideally, writing support should be integrated throughout a program. Since WATTs capitalizes on existing resources and requires only a modest amount of faculty time, it could enable engineering programs to provide additional writing support to students in multiple courses and provide a bridge for them to see the connection between writing concepts learned in composition courses and their technical reports. WATTS was developed in a junior-level circuit analysis course, where students were completing the same lab and writing individual reports. This paper focuses on a senior capstone course that utilizes concepts taught in previous courses to prepare students to complete an independent team research or design project. Projects are unique, usually based on the needs of an industrial sponsor, and are completed over three consecutive semesters. Each semester, teams write a report based on their activities during that semester, with a comprehensive report in the final semester. The multi-semester nature of the senior design project provides an opportunity for the researchers to chart longitudinal changes from the first to the students’ third semester interactions with the writing tutors, assessing the value of an integrated approach. The program’s impact on students’ attitudes toward revision and the value of tutoring, as well as the impact on tutors, are part of the assessment plan. The program hopes to change the students’ focus from simply presenting their results to communicating them. The goals of the project are to demonstrate to students that revision is essential to the writing process and that feedback can improve their written communication abilities. The expectation is that after graduation they will continue to seek critical feedback as part of their career growth. Surveys given to both students and tutors revealed that the sessions were taken seriously by the students and that meaningful collaboration was achieved between them. An evaluation of the writing in pre-tutored to final submitted report shows statistically significant improvement. Preliminary and current results will be included within the paper. [1] Criteria for Accrediting Engineering Technology Programs, ABET, Baltimore, MD., 2020, p.5, ETAC Criteria (abet.org) [2] Bergmann, L. S. and Zepernick, J., “Disciplinarity and Transfer: Students’ Perceptions of Learning to Write,” Writing Program Administration, 31, Fall/Winter 2007. 
    more » « less
  2. Engineering undergraduates are exposed to a variety of writing curricula, such as first-year-composition courses, in their early program of study; however, they have difficulties meeting the expectations of writing in early engineering courses. On the other hand, instructors in entry-level engineering lab courses struggle to instruct lab report writing due to a wide range of student writing backgrounds and pressure to focus on technical content. When using the lens of learning transfer theories, which describe the processes and the effective extent to which past experiences affect learning and performance in a new situation, we can classify engineering students in three writing transfer modes: 1) concurrent transfer, which occurs when a rhetorically-focused technical writing class is taken concurrently or prior to engineering labs in the major; 2) vertical transfer, which occurs when a rhetorically-focused general education writing class is taken prior to engineering labs in the major; and 3) absent transfer, which occurs when no rhetorically-focused writing class exists (rather literature-focused) or writing-intensive courses are not required in the general education curriculum. This study aims to investigate how the engineering sophomore’s past writing experience, specifically in collegiate writing or writing-across-the-curriculum courses, affects their engineering lab report writing. Lab reports from four sophomore engineering courses (1 civil, 2 electrical, 1 general engineering) across three institutions collected for analysis consisted of two sets: the sample sets in early labs (for example, Lab 1) and in later labs (for example, the last lab) of the courses. A total of 46 reports (22 early and 24 later) were collected from 22 engineering sophomores during AY2019-2020. Four engineering faculty (1 civil, 1 electrical, and 2 mechanical engineering) developed a rubric based on lab report writing student outcomes, which are aligned with the existing outcomes such as ABET outcomes and the student outcomes from the Council of Writing Program Administrators (WPA). The data suggest that the greatest writing gains in a first lab course are made by vertical transfer students, while concurrent transfer students enter with skills developed in prior writing coursework. The largest improvements among the three transfer modes were found in the student outcomes related to lab data presentation, analysis, and interpretation. In these outcomes, the concurrent transfer students had relatively high scores for both early and later reports, while the vertical transfer students improved their scores from relatively low in early reports to meet expectations in later reports. Absent transfer students demonstrated inconsistent outcomes and deserve greater study with more data than was available for this study. 
    more » « less
  3. This study focuses on the effectiveness of learning transfer-focused or transfer-focused lab report writing instructional modules on engineering undergraduates’ lab report writing in entry-level engineering laboratory courses. The modules are novel due to their shared language to describe and reinforce foundational writing terms used by the writing faculty and are ready for immediate use by engineering lab instructors. Three different universities, consisting of a polytechnical university, a liberal arts-anchored private university, and a branch campus of a research-one land grant university, participated. Student lab report samples from six various sophomore-level engineering courses were collected. For the control group, none of the participating lab instructors accessed the transfer-focused modules (academic years of 2019-2020 and 2020-2021); sixty-four control group lab report samples were collected (n = 64). In the academic year 2021-2022, the lab instructors had access to the transfer-focused modules via the web to be encouraged to update their lab instructions; the experimental group lab report samples were collected from forty-two students (n = 42). Using defined writing outcomes, a panel of engineering lab instructors assessed the participating students’ early (one of the first reports in the class) and late lab reports (written near the end of the course). The lab report assessment analysis indicates that only 30% of the control group students could write their early lab reports at a satisfactory level, while 60% of the experimental group students reached a satisfactory level in their early labs. For both early and late lab reports, the experimental group students outperformed most outcomes over the control group. The notably improved outcomes were related to audience awareness, data presentation, data analysis, and data interpretation. The transfer-focused lab report writing pedagogy enhanced engineering undergraduates’ ability to engage in critical thinking practices, including analysis, interpretation, and evaluation of their lab data/products. Additionally, students appeared to improve their awareness of a technical audience, expecting engineering language, styles, and conventions commonly shared by writers in engineering. 
    more » « less
  4. This study focuses on the effectiveness of learning transfer-focused or transfer-focused lab report writing instructional modules on engineering undergraduates’ lab report writing in entry-level engineering laboratory courses. The modules are novel due to their shared language to describe and reinforce foundational writing terms used by the writing faculty and are ready for immediate use by engineering lab instructors. Three different universities, consisting of a polytechnical university, a liberal arts-anchored private university, and a branch campus of a research-one land grant university, participated. Student lab report samples from six various sophomore-level engineering courses were collected. For the control group, none of the participating lab instructors accessed the transfer-focused modules (academic years of 2019-2020 and 2020-2021); sixty-four control group lab report samples were collected (n = 64). In the academic year 2021-2022, the lab instructors had access to the transfer-focused modules via the web to be encouraged to update their lab instructions; the experimental group lab report samples were collected from forty-two students (n = 42). Using defined writing outcomes, a panel of engineering lab instructors assessed the participating students’ early (one of the first reports in the class) and late lab reports (written near the end of the course). The lab report assessment analysis indicates that only 30% of the control group students could write their early lab reports at a satisfactory level, while 60% of the experimental group students reached a satisfactory level in their early labs. For both early and late lab reports, the experimental group students outperformed most outcomes over the control group. The notably improved outcomes were related to audience awareness, data presentation, data analysis, and data interpretation. The transfer-focused lab report writing pedagogy enhanced engineering undergraduates’ ability to engage in critical thinking practices, including analysis, interpretation, and evaluation of their lab data/products. Additionally, students appeared to improve their awareness of a technical audience, expecting engineering language, styles, and conventions commonly shared by writers in engineering. 
    more » « less
  5. Engineering undergraduates’ academic writing experiences prior to entry-level engineering lab courses can be classified into three different groups: a group with both rhetorically-focused writing (e.g., first-year-composition) and technical writing courses; a group with only rhetorically-focused writing courses; and a group with no rhetorically-focused writing or technical writing courses. Using a lens of transfer theories that explain how much knowledge from one context is used or adapted in new contexts, these three groups can be called concurrent, vertical, and absent transfer groups respectively. This study, which is part of a larger project developing and implementing writing-focused modules in engineering labs, aims to investigate undergraduates’ perspectives on readiness, writing transfer, and effectiveness of writing instructions in engineering lab report writing through a student survey. End-of-term online surveys (n = 40) of undergraduates in entry-level engineering lab courses were collected from three distinctive universities: an urban, commuter, public research university; an urban, private, teaching-focused university; and a rural, public, teaching-focused university. The survey questions have three parts: 1) student perspectives in writing in engineering disciplines; 2) how students use prior writing knowledge when writing lab reports in engineering lab courses; and 3) how engineering lab course writing instructions impact students’ engineering lab report writing. Findings suggest that the three transfer groups present statistical distinctions on the readiness of writing engineering lab reports (concurrent group as the highest and absent group as the lowest). The three groups also show different perspectives on how their freshmen writing courses contributed their engineering lab report writing. The concurrent transfer group believed freshmen writing instruction regarding “focus on purpose” contributed most when they write lab reports, while the greatest number of vertical transfer group students mentioned “knowledge about format and structure” was most helpful. Many absent transfer students valued “identifying problems or questions” instructed from their freshmen writing-intensive philosophy course as the content they used most when writing lab reports. Ultimately, the analysis of the data suggested that despite their perceived preparedness for writing lab reports, most of the students felt their skills improved as a result of engaging in lab report writing activities. 
    more » « less