- Award ID(s):
- 1838083
- Publication Date:
- NSF-PAR ID:
- 10207521
- Journal Name:
- Bioinformatics
- Volume:
- 36
- Issue:
- Supplement_1
- Page Range or eLocation-ID:
- i128 to i135
- ISSN:
- 1367-4803
- Sponsoring Org:
- National Science Foundation
More Like this
-
The time-to-event response is commonly thought of as survival analysis, and typically concerns statistical modeling of expected life span. In the example presented here, alfalfa leafcutting bees, Megachile rotundata, were randomly exposed to one of eight experimental thermoprofiles or two control thermoprofiles, for one to eight weeks. The incorporation of these fluctuating thermoprofiles in the management of the bees increases survival and blocks the development of sub-lethal effects, such as delayed emergence. The data collected here investigates the question of whether any experimental thermoprofile provides better overall survival, with a reduction and delay of sub-lethal effects. The study design incorporates typical aspects of agricultural research; random blocking effects. All M. rotundata prepupae brood cells were randomly placed in individual wells of 24-well culture plates. Plates were randomly assigned to thermoprofile and exposure duration, with three plate replicates per thermoprofile x exposure time. Bees were observed for emergence for 40 days. All bees that were not yet emerged prior to fixed end of study were considered to be censored observations. We fit a generalized linear mixed model (GLMM), using the SAS® GLIMMIX Procedure to the censored data and obtained time-to-emergence function estimates. As opposed to a typical survival analysis approach, suchmore »
-
Abstract We consider user retention analytics for online freemium role-playing games (RPGs). RPGs constitute a very popular genre of computer-based games that, along with a player’s gaming actions, focus on the development of the player’s in-game virtual character through a persistent exploration of the gaming environment. Most RPGs follow the freemium business model in which the gamers can play for free but they are charged for premium add-on amenities. As with other freemium products, RPGs suffer from the curse of high dropout rates. This makes retention analysis extremely important for successful operation and survival of their gaming portals. Here, we develop a disciplined statistical framework for retention analysis by modelling multiple in-game player characteristics along with the dropout probabilities. We capture players’ motivations through engagement times, collaboration and achievement score at each level of the game, and jointly model them using a generalized linear mixed model (glmm) framework that further includes a time-to-event variable corresponding to churn. We capture the interdependencies in a player’s level-wise engagement, collaboration, achievement with dropout through a shared parameter model. We illustrate interesting changes in player behaviours as the gaming level progresses. The parameters in our joint model were estimated by a Hamiltonian Monte Carlomore »
-
Abstract Motivation The construction of the compacted de Bruijn graph from collections of reference genomes is a task of increasing interest in genomic analyses. These graphs are increasingly used as sequence indices for short- and long-read alignment. Also, as we sequence and assemble a greater diversity of genomes, the colored compacted de Bruijn graph is being used more and more as the basis for efficient methods to perform comparative genomic analyses on these genomes. Therefore, time- and memory-efficient construction of the graph from reference sequences is an important problem. Results We introduce a new algorithm, implemented in the tool Cuttlefish, to construct the (colored) compacted de Bruijn graph from a collection of one or more genome references. Cuttlefish introduces a novel approach of modeling de Bruijn graph vertices as finite-state automata, and constrains these automata’s state-space to enable tracking their transitioning states with very low memory usage. Cuttlefish is also fast and highly parallelizable. Experimental results demonstrate that it scales much better than existing approaches, especially as the number and the scale of the input references grow. On a typical shared-memory machine, Cuttlefish constructed the graph for 100 human genomes in under 9 h, using ∼29 GB of memory. On 11more »
-
Summary We introduce a flexible marginal modelling approach for statistical inference for clustered and longitudinal data under minimal assumptions. This estimated estimating equations approach is semiparametric and the proposed models are fitted by quasi-likelihood regression, where the unknown marginal means are a function of the fixed effects linear predictor with unknown smooth link, and variance–covariance is an unknown smooth function of the marginal means. We propose to estimate the nonparametric link and variance–covariance functions via smoothing methods, whereas the regression parameters are obtained via the estimated estimating equations. These are score equations that contain nonparametric function estimates. The proposed estimated estimating equations approach is motivated by its flexibility and easy implementation. Moreover, if data follow a generalized linear mixed model, with either a specified or an unspecified distribution of random effects and link function, the model proposed emerges as the corresponding marginal (population-average) version and can be used to obtain inference for the fixed effects in the underlying generalized linear mixed model, without the need to specify any other components of this generalized linear mixed model. Among marginal models, the estimated estimating equations approach provides a flexible alternative to modelling with generalized estimating equations. Applications of estimated estimating equations includemore »
-
Abstract Motivation Genomic sequencing studies, including RNA sequencing and bisulfite sequencing studies, are becoming increasingly common and increasingly large. Large genomic sequencing studies open doors for accurate molecular trait heritability estimation and powerful differential analysis. Heritability estimation and differential analysis in sequencing studies requires the development of statistical methods that can properly account for the count nature of the sequencing data and that are computationally efficient for large datasets.
Results Here, we develop such a method, PQLseq (Penalized Quasi-Likelihood for sequencing count data), to enable effective and efficient heritability estimation and differential analysis using the generalized linear mixed model framework. With extensive simulations and comparisons to previous methods, we show that PQLseq is the only method currently available that can produce unbiased heritability estimates for sequencing count data. In addition, we show that PQLseq is well suited for differential analysis in large sequencing studies, providing calibrated type I error control and more power compared to the standard linear mixed model methods. Finally, we apply PQLseq to perform gene expression heritability estimation and differential expression analysis in a large RNA sequencing study in the Hutterites.
more »Availability and implementation PQLseq is implemented as an R package with source code freely available at www.xzlab.org/software.html and https://cran.r-project.org/web/packages/PQLseq/index.html.