Defense against small molecule toxic gases is an important aspect of protection against chemical and biological threat as well as chemical releases from industrial accidents. Current protective respirators/garments cannot effectively block small molecule toxic gases and vapors and retain moisture transmission capability without a heavy burden. Here, we developed a nanopacked bed of nanoparticles of UiO-66-NH₂ metal organic framework (MOF) by synthesizing them in the pores of microporous expanded polytetrafluoroethylene (ePTFE) membranes. The submicron scale size of membrane pores ensures a large surface area of MOF nanoparticles which can capture/adsorb and react with toxic gas molecules efficiently. It was demonstratedmore »
Ionic Liquid Welding of the UIO-66-NH2 MOF to Cotton Textiles
Ionic liquid based fiber welding has been used to attach the metal−organic framework (MOF) UiO-66-NH2to cotton fibers. The results show that by controlling the extent of the welding process, it is possible to produce fibers that contain a high surface area (approximately 50−100 m2/ g), an X-ray diffraction pattern consistent with UiO-66-NH2, and fibers that
are chemically reactive to dimethyl 4-nitrophenyl phosphate (DMNP), a common chemical weapon simulant. The ionic liquid/MOF welding solution can be applied by directly placing the fabric in the welding solution or by utilizing an airbrushing technique. Both welding techniques are shown to be scalable with results collected on approximately 1×1, 5
×5, and 15.5×15.5 in. swatches. The results are also applicable to weaving methods where the MOF is welded to individual threads and subsequently woven into a textile. The results provide an industrially scalable method of attaching a wide variety of MOFs to cotton textiles, which does not require synthesizing the MOF in the presence of the textile.
- Award ID(s):
- 1726263
- Publication Date:
- NSF-PAR ID:
- 10207558
- Journal Name:
- Industrial engineering chemistry research
- Volume:
- 59
- Issue:
- 43
- Page Range or eLocation-ID:
- 19285-19298
- ISSN:
- 1520-5045
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ionic liquids (ILs) are becoming important solvents in commerce, but monitoring their purity and performance in industrial applications presents new challenges. Fiber welding technology utilizes ILs to mold and shape natural fibers (cotton, hemp, flax, silk, and wool) into morphologies that are typically attained only using synthetic, petroleum-based non-biodegradable plastics. The result is an atom-efficient process that up-converts fibrous substrates to value-added products and materials. A key aspect of bringing this and other IL-enabled technologies to market relies on efficient monitoring and recycling of IL-based solvents. Implementing online IL quality monitoring enhances the unit economics of these processes. Here, wemore »
-
Isothermal membrane-based air dehumidification (IMAD) is much more energy-efficient and economical than traditional air-dehumidification technologies. There are, however, no practical IMAD process technologies currently available mainly due to limitations of current membranes. Ionic liquids (ILs) are a promising air-dehumidification membrane material. Current supported IL membranes suffer from poor stability, limiting their performances. Herein, we propose new stable IL membranes, encapsulated IL membranes (EILMs) by encapsulating 1-butyl-3-methylimidazolium bromide ([C 4 MIM][Br]) into ultrathin polycrystalline UiO-66-NH 2 metal–organic framework membranes via a ship-in-a-bottle method. The stability of IL membranes is significantly enhanced due to the IL entrapped in the pore cages ofmore »
-
With the increased bacteria-induced hospital-acquired infections (HAIs) caused by bio-contaminated surfaces, the requirement for a safer and more efficient antibacterial strategy in designing personal protective equipment (PPE) such as N95 respirators is rising with urgency. Herein, a self-decontaminating nanofibrous filter with a high particulate matter (PM) filtration efficiency was designed and fabricated via a facile electrospinning method. The fillers implemented in the electrospun nanofibers were constructed by grafting a layer of antibacterial polymeric quaternary ammonium compound (QAC), that is, poly[2-(dimethyl decyl ammonium) ethyl methacrylate] (PQDMAEMA), onto the surface of metal–organic framework (MOF, UiO-66-NH 2 as a model) to form themore »
-
Herein, a series of halogenated UiO-66 derivatives was synthesized and analyzed for the breakdown of the chemical warfare agent simulant dimethyl-4-nitrophenyl phosphate (DMNP) to analyze ligand effects. UiO-66-I degrades DMNP at a rate four times faster than the most active previously reported MOFs. MOF defects were quantified and ruled out as a cause for increased activity. Theoretical calculations suggest the enhanced activity of UiO-66-I originates from halogen bonding of the iodine atom to the phosphoester linkage allowing for more rapid hydrolysis of the P–O bond.