skip to main content


Title: A system for probing Casimir energy corrections to the condensation energy
Abstract

In this article, we present a nanoelectromechanical system (NEMS) designed to detect changes in the Casimir energy. The Casimir effect is a result of the appearance of quantum fluctuations in an electromagnetic vacuum. Previous experiments have used nano- or microscale parallel plate capacitors to detect the Casimir force by measuring the small attractive force these fluctuations exert between the two surfaces. In this new set of experiments, we aim to directly detect the shifts in the Casimir energy in a vacuum due to the presence of the metallic parallel plates, one of which is a superconductor. A change in the Casimir energy of this configuration is predicted to shift the superconducting transition temperature (Tc) because of the interaction between it and the superconducting condensation energy. In our experiment, we take a superconducting film, carefully measure its transition temperature, bring a conducting plate close to the film, create a Casimir cavity, and then measure the transition temperature again. The expected shifts are smaller than the normal shifts one sees in cycling superconducting films to cryogenic temperatures, so using a NEMS resonator in situ is the only practical way to obtain accurate, reproducible data. Using a thin Pb film and opposing Au surface, we observe no shift inTc>12 µK down to a minimum spacing of ~70 nm at zero applied magnetic field.

 
more » « less
Award ID(s):
1708283
PAR ID:
10207570
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Microsystems & Nanoengineering
Volume:
6
Issue:
1
ISSN:
2055-7434
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Casimir Effect is a physical manifestation of quantum fluctuations of the electromagnetic vacuum. When two metal plates are placed close together, typically much less than a micron, the long wavelength modes between them are frozen out, giving rise to a net attractive force between the plates, scaling as d−4 (or d−3 for a spherical-planar geometry) even when they are not electrically charged. In this paper, we observe the Casimir Effect in ambient conditions using a modified capacitive micro-electromechanical system (MEMS) sensor. Using a feedback-assisted pick-and-place assembly process, we are able to attach various microstructures onto the post-release MEMS, converting it from an inertial force sensor to a direct force measurement platform with pN (piconewton) resolution. With this system we are able to directly measure the Casimir force between a silver-coated microsphere and gold-coated silicon plate. This device is a step towards leveraging the Casimir Effect for cheap, sensitive, room temperature quantum metrology. 
    more » « less
  2. The Casimir Effect is a physical manifestation of quantum fluctuations of the electromagnetic vacuum. When two metal plates are placed close together, typically much less than a micron, the long wavelength modes between them are frozen out, giving rise to a net attractive force between the plates, scaling as d−4 (or d−3 for a spherical-planar geometry) even when they are not electrically charged. In this paper, we observe the Casimir Effect in ambient conditions using a modified capacitive micro-electromechanical system (MEMS) sensor. Using a feedback-assisted pick-and-place assembly process, we are able to attach various microstructures onto the post-release MEMS, converting it from an inertial force sensor to a direct force measurement platform with pN (piconewton) resolution. With this system we are able to directly measure the Casimir force between a silver-coated microsphere and gold-coated silicon plate. This device is a step towards leveraging the Casimir Effect for cheap, sensitive, room temperature quantum metrology. 
    more » « less
  3. Quantum and thermal fluctuations are fundamental to a plethora of phenomena within quantum optics, including the Casimir effect that acts between closely separated surfaces typically found in microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) devices. Particularly promising for engineering and harnessing these forces are systems out of thermal equilibrium. Recently, semiconductors with external bias have been proposed to study the nonequilibrium Casimir force. Here, we explore systems involving moderately biased semiconductors that exhibit strong repulsive Casimir forces, and we determine the effects of bias voltage, semiconductor bandgap energy, and separation for experimentally accessible configurations. Modes emitted from the semiconductors exert a repulsive force on a near surface that overcomes the attractive equilibrium Casimir force contribution at submicron distances. For the geometry of two parallel planes, those modes undergo Fabry–Pérot interference resulting in an oscillatory force behavior as a function of separation. Utilizing the proximity-force approximation, we predict that the repulsive force exerted on a gold sphere is well within the accuracy of typical Casimir force experiments. Our work opens up new possibilities for controlling forces at the nanometer and micrometer scale with applications in sensing and actuation in nanotechnology.

     
    more » « less
  4. Abstract

    Superconductivity in low carrier density metals challenges the conventional electron-phonon theory due to the absence of retardation required to overcome Coulomb repulsion. Here we demonstrate that pairing mediated by energy fluctuations, ubiquitously present close to continuous phase transitions, occurs in dilute quantum critical polar metals and results in a dome-like dependence of the superconductingTcon carrier density, characteristic of non-BCS superconductors. In quantum critical polar metals, the Coulomb repulsion is heavily screened, while the critical transverse optical phonons decouple from the electron charge. In the resulting vacuum, long-range attractive interactions emerge from the energy fluctuations of the critical phonons, resembling the gravitational interactions of a chargeless dark matter universe. Our estimates show that this mechanism may explain the critical temperatures observed in doped SrTiO3. We provide predictions for the enhancement of superconductivity near polar quantum criticality in two- and three-dimensional materials that can be used to test our theory.

     
    more » « less
  5. Abstract

    Logic switches enabled by nanoelectromechanical systems (NEMS) offer abrupt on/off‐state transition with zero off‐state leakage and minimal subthreshold swing, making them uniquely suited for enhancing mainstream electronics in a range of applications, such as power gating, high‐temperature and high‐voltage logic, and ultralow‐power circuits requiring zero standby leakage. As NEMS switches are scaled with genuinely nanoscale gaps and contacts, quantum mechanical electrodynamic force (EDF) takes an important role and may be the ultimate cause of the plaguing problem of stiction. Here, combined with experiments on three‐terminal silicon carbide (SiC) NEMS switches, a theoretical investigation is performed to elucidate the origin of EDF and Casimir effect leading to stiction, and to develop a stiction‐mitigation design. The EDF calculation with full Lifshitz formula using the actual material and device parameters is provided. Finite element modeling and analytical calculations demonstrate that EDF becomes dominant over elastic restoring force in such SiC NEMS when the switching gap shrinks to a few nanometers, leading to irreversible stiction at contact. Artificially corrugated contact surfaces are designed to reduce the contact area and the EDF, thus evading stiction. This rationalsurface engineeringreduces the EDF down to 4% compared with the case of unengineered, flat contact surfaces.

     
    more » « less