skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Superconductivity from energy fluctuations in dilute quantum critical polar metals
Abstract Superconductivity in low carrier density metals challenges the conventional electron-phonon theory due to the absence of retardation required to overcome Coulomb repulsion. Here we demonstrate that pairing mediated by energy fluctuations, ubiquitously present close to continuous phase transitions, occurs in dilute quantum critical polar metals and results in a dome-like dependence of the superconductingTcon carrier density, characteristic of non-BCS superconductors. In quantum critical polar metals, the Coulomb repulsion is heavily screened, while the critical transverse optical phonons decouple from the electron charge. In the resulting vacuum, long-range attractive interactions emerge from the energy fluctuations of the critical phonons, resembling the gravitational interactions of a chargeless dark matter universe. Our estimates show that this mechanism may explain the critical temperatures observed in doped SrTiO3. We provide predictions for the enhancement of superconductivity near polar quantum criticality in two- and three-dimensional materials that can be used to test our theory.  more » « less
Award ID(s):
1830707
PAR ID:
10381674
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Cerium-based ternary compounds CeNi2Cd20and CePd2Cd20do not exhibit long-range order down to millikelvin temperature range. Given the large separation between Ce ions which significantly reduces the super-exchange interactions and vanishingly small Ruderman–Kittel–Kasuya–Yosida interaction, here we show that nodal superconductivity mediated by the valence fluctuations must be a ground state in these materials. We propose that the critical temperature for the superconducting transition can be significantly increased by applying hydrostatic pressure. We employ an extended periodic Anderson lattice model which includes the long-range Coulomb interactions between the itinerant electrons as well as the local Coulomb interaction between the predominantly localized and itinerant electrons to compute a critical temperature of the superconducting transition. Using the slave-boson approach we show that fluctuations mediated by the repulsive electron–electron interactions lead to the emergence ofd-wave superconductivity. 
    more » « less
  2. Abstract There is tremendous interest in employing collective excitations of the lattice, spin, charge, and orbitals to tune strongly correlated electronic phenomena. We report such an effect in a ruthenate, Ca3Ru2O7, where two phonons with strong electron-phonon coupling modulate the electronic pseudogap as well as mediate charge and spin density wave fluctuations. Combining temperature-dependent Raman spectroscopy with density functional theory reveals two phonons,B2PandB2M, that are strongly coupled to electrons and whose scattering intensities respectively dominate in the pseudogap versus the metallic phases. TheB2Psqueezes the octahedra along the out of planec-axis, while theB2Melongates it, thus modulating the Ru 4d orbital splitting and the bandwidth of the in-plane electron hopping; Thus,B2Popens the pseudogap, whileB2Mcloses it. Moreover, theB2phonons mediate incoherent charge and spin density wave fluctuations, as evidenced by changes in the background electronic Raman scattering that exhibit unique symmetry signatures. The polar order breaks inversion symmetry, enabling infrared activity of these phonons, paving the way for coherent light-driven control of electronic transport. 
    more » « less
  3. Abstract We consider a model of electrons at zero temperature, with a repulsive interaction which is a function of the energy transfer. Such an interaction can arise from the combination of electron–electron repulsion at high energies and the weaker electron–phonon attraction at low energies. As shown in previous works, superconductivity can develop despite the overall repulsion due to the energy dependence of the interaction, but the gap Δ(ω) must change sign at some (imaginary) frequencyω0to counteract the repulsion. However, when the constant repulsive part of the interaction is increased, a quantum phase transition towards the normal state occurs. We show that, as the phase transition is approached, Δ andω0must vanish in a correlated way such that$$1/| \log [{{\Delta }}(0)]| \sim {\omega }_{0}^{2}$$ 1 / log [ Δ ( 0 ) ] ~ ω 0 2 . We discuss the behavior of phase fluctuations near this transition and show that the correlation between Δ(0) andω0locks the phase stiffness to a non-zero value. 
    more » « less
  4. Abstract The characteristic excitation of a metal is its plasmon, which is a quantized collective oscillation of its electron density. In 1956, David Pines predicted that a distinct type of plasmon, dubbed a ‘demon’, could exist in three-dimensional (3D) metals containing more than one species of charge carrier1. Consisting of out-of-phase movement of electrons in different bands, demons are acoustic, electrically neutral and do not couple to light, so have never been detected in an equilibrium, 3D metal. Nevertheless, demons are believed to be critical for diverse phenomena including phase transitions in mixed-valence semimetals2, optical properties of metal nanoparticles3, soundarons in Weyl semimetals4and high-temperature superconductivity in, for example, metal hydrides3,5–7. Here, we present evidence for a demon in Sr2RuO4from momentum-resolved electron energy-loss spectroscopy. Formed of electrons in theβandγbands, the demon is gapless with critical momentumqc = 0.08 reciprocal lattice units and room-temperature velocityv = (1.065 ± 0.12) × 105m s−1that undergoes a 31% renormalization upon cooling to 30 K because of coupling to the particle–hole continuum. The momentum dependence of the intensity of the demon confirms its neutral character. Our study confirms a 67-year old prediction and indicates that demons may be a pervasive feature of multiband metals. 
    more » « less
  5. Polar metals are an intriguing class of materials that simultaneously host free carriers and polar structural distortions. Despite the name “polar metal,” however, most well-studied polar metals are poor electrical conductors. Here, we demonstrate the molecular beam epitaxial growth of LaPtSb and LaAuGe, two polar metal compounds whose electrical resistivity is an order of magnitude lower than the well studied oxide polar metals. These materials belong to a broad family of ABC intermetallics adopting the stuffed wurtzite structure, also known as hexagonal Heusler compounds. Scanning transmission electron microscopy reveals a polar structure with unidirectionally buckled BC (PtSb and AuGe) planes. Magnetotransport measurements demonstrate good metallic behavior with low residual resistivity (ρLaAuGe = 59.05 μΩ cm and ρLaAPtSb = 27.81 μΩ cm at 2 K) and high carrier density (nh ∼ 1021 cm−3). Photoemission spectroscopy measurements confirm the band metallicity and are in quantitative agreement with density functional theory (DFT) calculations. Through DFT-chemical pressure and crystal orbital Hamilton population analyses, the atomic packing factor is found to support the polar buckling of the structure although the degree of direct interlayer B–C bonding is limited by repulsion at the A–C contacts. When combined with predicted ferroelectric hexagonal Heuslers, these materials provide a new platform for fully epitaxial, multiferroic heterostructures. 
    more » « less