skip to main content

Title: Development and Assessment of a Vignette Survey Instrument to Identify Responses due to Hidden Curriculum among Engineering Students and Faculty
One of the pivotal goals in engineering education is to broaden participation of different minorities. An overlooked barrier yet to be explored is how hidden curriculum and its connected constructs may impede this goal. Hidden curriculum (HC) refers to the unwritten, unofficial, and often unintended assumptions, lessons, values, beliefs, attitudes, and perspectives in engineering. This paper will present the development and assessment of a mixed-method vignette survey instrument to evaluate the responses of current engineering students and faculty when exposed to several examples of hidden curriculum. Results from 153 engineering students and faculty across the United States and Puerto Rico were used to assess the survey sub-subscales (HC awareness, emotions, self-efficacy, and self-advocacy). Findings revealed Cronbach alpha coefficients of 0.70 (HC awareness), 0.73 (emotions), 0.91 (self-efficacy), and 0.91 (self-advocacy). The overall instrument had a reliability of 0.74. Alongside HC awareness, we found that among different axes of inequity, gender, role, and institution type are important elements that shaped the responses of these engineering populations.
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
IJEE International Journal of Engineering Education
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. The purpose of this exploratory special issue study was to understand the hidden curriculum (HC), or the unwritten, unofficial, or unintended lessons, around the professionalization of engineering faculty across institutions of higher education. Additionally, how engineering faculty connected the role of HC awareness, emotions, self-efficacy, and self-advocacy concepts was studied. A mixed-method survey was disseminated to 55 engineering faculties across 54 institutions of higher education in the United States. Quantitative questions, which centered around the influences that gender, race, faculty rank, and institutional type played in participants’ responses was analyzed using a combination of decision tree analysis with chi-square and correlational analysis. Qualitative questions were analyzed by a combination of tone-, open-, and focused-coding. The findings pointed to the primary roles that gender and institutional type (e.g., Tier 1) played in issues of fulfilling the professional expectations of the field. Furthermore, it was found that HC awareness and emotions and HC awareness and self-efficacy had moderate positive correlations, whereas, compared to self-advocacy, it had weak, negative correlations. Together, the findings point to the complex understandings and intersectional lived realities of many engineering faculty and hopes that through its findings can create awareness of the challenges and obstacles present in thesemore »professional environments.« less
  2. This work in progress paper describes the initial stages of a project which aims to characterize the mechanisms of hidden curriculum (HC) in engineering and identify methods for exploring this phenomenon. To effectively study the complex nature of HC, this work brings together researchers with a range of expertise (sociology, engineering education, engineering, statistics, policy analysis, curriculum and instruction) to develop a holistic approach to explore HC in engineering. This work describes the process of gathering input from this multidisciplinary team as well as the literature to develop a mixed-method instrument and model to explore the mechanisms behind HC in engineering, a new realm in engineering education. Early findings suggest that HC may require considerations of an individual’s motivation, self-efficacy, and self-advocacy. The paper also discusses the initial stages of a vignette design used to elicit participants’ responses and reactions to the presented scenes. The vignette scenes focus on HC elements present during classroom preparation and instruction in engineering. Preliminary work on these HC elements per scene are also discussed here.
  3. Hidden curriculum (HC) consist of the particular assumptions that are held by individuals about schooling that are manifested in practice (Smith, 2014). These assumptions can be recognized through socio cultural interactions, experiences with their physical surroundings, or exposure to virtual environments (The Glossary of Education Reform, 2017; Killick , 2016; Margolis, 2001; Smith, 2014). HC has been explored widely in fields such as education, psychology, business, and medicine (Baird, Bracken, & Grierson, 2016; Borges, Ferreira, Borges de Oliveria , Macini , Caldana , 2017; Cotton, Winter, & Bailey, 2013; Joughin , 2010; Margolis, 2001; Rabah , 2012; Smith, 2014) but is relatively unaddressed in engineering (Erickson, 2007; Villanueva et al., 2018) and more specifically neither the positive or negative implications of HC in engineering have been explored. This study sought to use a mixed method approach to understand the mechanisms behind HC recognition (via emotions and self efficacy) for engineering students and faculty nationwide.
  4. The purpose of this Work In Progress (WIP) qualitative study was to explore how engineering graduate students respond to and value hidden curriculum that is revealed to them through video scenarios and six explicit statements. This WIP paper will focus on how awareness of resources, emotions, and confidence can spark an action for students to help themselves (i.e., self-advocacy) or help others (i.e., advocacy) specifically in regards to raising awareness and revealing hidden curriculum within engineering. The goals of this WIP paper are to: (a) explore how graduate students react to and value the hidden curriculum presented; and (b) determine what graduate students perceive is necessary to take action in regards to the issues presented in the video and hidden curriculum statements.
  5. Hidden Curriculum (HC) consists of the unacknowledged and often, unintentional exclusionary systemic messages that are structurally supported and sustained [1]. Due to the persistent influence of HC in helping establish the norm in educational and working environments, research in this topic is gaining prominence in fields like engineering. This paper contributes to the knowledge base by exploring the level of HC awareness (HCA) and the definitions that over 600 undergraduate engineering students across Hispanic-Serving and non-Hispanic Serving Institutions ascribed to when defining HC. Using mixed-methods analysis, two-factor ANOVA was conducted on the quantitative items of HCA, at the intersection of self-identified gender and institutional type. The first round of coding was followed by open and axial coding of the written definitions provided by the participants. Results suggest there were significant differences in levels of HCA between HSIs and non-HSIs with other institutions (e.g, HEIs) having the highest levels of HCA. The responses to the open-ended question yielded four specific themes: (a) Confirmation of Existence of HC; (b) Attribution of HC to Cognitive Elements; (c) Attribution of HC to Socio-Humanistic Elements; and (d) Refusal of Existence of HC. A discussion of its implications was included in this paper.