skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coastal Typology: An Analysis of the Spatiotemporal Relationship between Socioeconomic Development and Shoreline Change
Globally, coastal communities are impacted by hazards including storm events, rising water levels, and associated coastal erosion. These hazards destroy homes and infrastructure causing human and financial risks for communities. At the same time, the economic and governance capacity of these communities varies widely, impacting their ability to plan and adapt to hazards. In order to identify locations vulnerable to coastal hazards, knowledge of the physical coastal changes must be integrated with the socio-economic profiles of communities. To do this, we couple information about coastal erosion rates and economic data in communities along the Great Lakes to develop a typology that summarizes physical and economic vulnerability to coastal erosion. This typology classifies communities into one of four categories: (1) High physical and economic vulnerability to coastal erosion, (2) High physical but low economic vulnerability to coastal erosion, (3) Low physical and low economic vulnerability to coastal erosion, and (4) High economic but low physical vulnerability to coastal erosion. An analysis of this typology over three time periods (2005–2010), (2010–2014), and (2014–2018) reveals the dynamic nature of vulnerability over this fourteen year time span. Given this complexity, it can be difficult for managers and decision-makers to decide where to direct limited resources for coastal protection. Our typology provides an analytical tool to proactively address this challenge. Further, it advances existing work on coastal change and associated vulnerability in three ways. One, it implements a regional, analytical approach that moves beyond case study-oriented work and facilitates community analyses in a comparative context. Two, the typology provides an integrated assessment of vulnerability that considers economic vulnerability to coastal erosion, which is a contextual variable that compounds or helps mitigate vulnerability. Three, the typology facilitates community comparisons over time, which is important to identifying drivers of change in Great Lakes coastal communities over time and community efforts to mitigate and adapt to these hazards.  more » « less
Award ID(s):
1939979
PAR ID:
10207598
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Land
Volume:
9
Issue:
7
ISSN:
2073-445X
Page Range / eLocation ID:
218
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Coastal storms are an important driver of geomorphic change along Great Lakes shorelines. While there is abundant anecdotal evidence for storm impacts in the region, only a handful of studies over the last few decades have quantified them and addressed system morphodynamics. Annual to seasonal lake-level fluctuations and declining winter-ice covers also influence coastal response to storms, yet relationships between hydrodynamics and geomorphology are poorly constrained. Given this, the Great Lakes region lags behind marine coasts in terms of predictive modeling of future coastal change, which is a necessary tool for proactive coastal management. To help close this gap, we conducted a year-long study at a sandy beach-dune system along the western shore of Lake Michigan, evaluating storm impacts under conditions of extremely high water level and absent shorefast ice. Drone-derived beach and dune topography data were used to link geomorphic changes to specific environmental conditions. High water levels throughout the year of study facilitated erosion during relatively minor wave events, enhancing the vulnerability of the system to a large storm in January 2020. This event occurred with no shorefast ice present and anomalously high winter water levels, resulting in widespread erosion and overwash. This resulted in 20% of the total accretion and 66% of the erosion documented at the site over the entire year. Our study highlights the importance of both antecedent and present conditions in determining Great Lakes shoreline vulnerability to storm impacts. 
    more » « less
  2. Adnan, Mohammed_Sarfaraz Gani (Ed.)
    Climate change poses great risks to archaeological heritage, especially in coastal regions. Preparing to mitigate these challenges requires detailed and accurate assessments of how coastal heritage sites will be impacted by sea level rise (SLR) and storm surge, driven by increasingly severe storms in a warmer climate. However, inconsistency between modeled impacts of coastal erosion on archaeological sites and observed effects has thus far hindered our ability to accurately assess the vulnerability of sites. Modeling of coastal impacts has largely focused on medium-to-long term SLR, while observations of damage to sites have almost exclusively focused on the results of individual storm events. There is therefore a great need for desk-based modeling of the potential impacts of individual storm events to equip cultural heritage managers with the information they need to plan for and mitigate the impacts of storm surge in various future sea level scenarios. Here, we apply the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model to estimate the risks that storm surge events pose to archaeological sites along the coast of the US State of Georgia in four different SLR scenarios. Our results, shared with cultural heritage managers in the Georgia Historic Preservation Division to facilitate prioritization, documentation, and mitigation efforts, demonstrate that over 4200 archaeological sites in Georgia alone are at risk of inundation and erosion from hurricanes, more than ten times the number of sites that were previously estimated to be at risk by 2100 accounting for SLR alone. We hope that this work encourages necessary action toward conserving coastal physical cultural heritage in Georgia and beyond. 
    more » « less
  3. null (Ed.)
    As coastal communities around the globe contend with the impacts of climate change including coastal hazards such as sea level rise and more frequent coastal storms, educating stakeholders and the general public has become essential in order to adapt to and mitigate these risks. Communicating SLR and other coastal risks is not a simple task. First, SLR is a phenomenon that is abstract as it is physically distant from many people; second, the rise of the sea is a slow and temporally distant process which makes this issue psychologically distant from our everyday life. Virtual reality (VR) simulations may offer a way to overcome some of these challenges, enabling users to learn key principles related to climate change and coastal risks in an immersive, interactive, and safe learning environment. This article first presents the literature on environmental issues communication and engagement; second, it introduces VR technology evolution and expands the discussion on VR application for environmental literacy. We then provide an account of how three coastal communities have used VR experiences developed by multidisciplinary teams—including residents—to support communication and community outreach focused on SLR and discuss their implications. 
    more » « less
  4. Abstract The thawing of permafrost in the Arctic has led to an increase in coastal land loss, flooding, and ground subsidence, seriously threatening civil infrastructure and coastal communities. However, a lack of tools for synthetic hazard assessment of the Arctic coast has hindered effective response measures. We developed a holistic framework, the Arctic Coastal Hazard Index (ACHI), to assess the vulnerability of Arctic coasts to permafrost thawing, coastal erosion, and coastal flooding. We quantified the coastal permafrost thaw potential (PTP) through regional assessment of thaw subsidence using ground settlement index. The calculations of the ground settlement index involve utilizing projections of permafrost conditions, including future regional mean annual ground temperature, active layer thickness, and talik thickness. The predicted thaw subsidence was validated through a comparison with observed long-term subsidence data. The ACHI incorporates the PTP into seven physical and ecological variables for coastal hazard assessment: shoreline type, habitat, relief, wind exposure, wave exposure, surge potential, and sea-level rise. The coastal hazard assessment was conducted for each 1 km2coastline of North Slope Borough, Alaska in the 2060s under the Representative Concentration Pathway 4.5 and 8.5 forcing scenarios. The areas that are prone to coastal hazards were identified by mapping the distribution pattern of the ACHI. The calculated coastal hazards potential was subjected to validation by comparing it with the observed and historical long-term coastal erosion mean rates. This framework for Arctic coastal assessment may assist policy and decision-making for adaptation, mitigation strategies, and civil infrastructure planning. 
    more » « less
  5. In the context of climate change, the term resilience was popularized by the field of ecology to describe how ecological systems respond to stress and has since been adopted and significantly adapted by various fields, including psychology, policy, urban planning, and engineering. The exact meaning of resilience has blurred over time. In the context of coastal hazards, “resilience” is a holistic idea that relates long and short-term physical hazards with societal and biological impacts and mitigation measures. However, applying this idea to community-based mitigation planning remains challenging due to: (1) the diverse meanings, perspectives, and applications of the term, (2) the tendency of the term to defer to the status quo, thereby neglecting the voices of historically marginalized populations, and (3) the non-participatory and quantitative nature of resilience studies, often depending on cost-benefit analyses. In this paper, an interdisciplinary team of researchers and practitioners develops and proposes a new conceptual model for coastal resilience that offers to help address these aforementioned challenges by focusing on meaningful community engagement. The goal of this paper is to introduce the pitfalls of existing interpretations of coastal resilience, describe the team-based approach applied to develop this framework, and provide a theoretical path forward that addresses the current challenges in describing coastal resilience. This new framework (a) integrates relevant factors of coastal resilience including hazards, exposure, vulnerability, adaptation, mitigation and preparedness to qualitatively explore a community’s perception and state of resilience which (b) transcends existing models and (c) can be interpreted through a variety of perspectives. This model can be applied to document and assess locally differential understandings of coastal resilience and to engage communities in reflections of their individual and collective sense of resilience. 
    more » « less