skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling the potential impact of storm surge and sea level rise on coastal archaeological heritage: A case study from Georgia
Climate change poses great risks to archaeological heritage, especially in coastal regions. Preparing to mitigate these challenges requires detailed and accurate assessments of how coastal heritage sites will be impacted by sea level rise (SLR) and storm surge, driven by increasingly severe storms in a warmer climate. However, inconsistency between modeled impacts of coastal erosion on archaeological sites and observed effects has thus far hindered our ability to accurately assess the vulnerability of sites. Modeling of coastal impacts has largely focused on medium-to-long term SLR, while observations of damage to sites have almost exclusively focused on the results of individual storm events. There is therefore a great need for desk-based modeling of the potential impacts of individual storm events to equip cultural heritage managers with the information they need to plan for and mitigate the impacts of storm surge in various future sea level scenarios. Here, we apply the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model to estimate the risks that storm surge events pose to archaeological sites along the coast of the US State of Georgia in four different SLR scenarios. Our results, shared with cultural heritage managers in the Georgia Historic Preservation Division to facilitate prioritization, documentation, and mitigation efforts, demonstrate that over 4200 archaeological sites in Georgia alone are at risk of inundation and erosion from hurricanes, more than ten times the number of sites that were previously estimated to be at risk by 2100 accounting for SLR alone. We hope that this work encourages necessary action toward conserving coastal physical cultural heritage in Georgia and beyond.  more » « less
Award ID(s):
1832178
PAR ID:
10561082
Author(s) / Creator(s):
;
Editor(s):
Adnan, Mohammed_Sarfaraz Gani
Publisher / Repository:
PLOS ONE
Date Published:
Journal Name:
PLOS ONE
Volume:
19
Issue:
2
ISSN:
1932-6203
Page Range / eLocation ID:
e0297178
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Milner, George (Ed.)
    Abstract Integration of natural and cultural resource management is urgently needed to combat the effects of climate change. Scientists must contend with how human-induced climate change and rapid population expansion are fundamentally reworking densely inhabited coastal zones. We propose that a merger of archaeology, environmental science, and land management policy—different yet intertwined domains—is needed to address dramatic losses to biocultural resources that comprise coupled cultural-natural systems. We demonstrate the urgency of such approaches through analyses of coastal archaeological regions within the U.S. Atlantic and Gulf coasts where sea level rise is a primary threat, and we extend our findings globally through an assessment of primary risk factors and forecasts for archaeological sites in the Netherlands, Peru, and Oceania. Results show that across the U.S. Gulf Coast and in Oceania, where little hard infrastructure is in place to protect archaeological sites, hundreds of low-lying coastal sites will be lost under future climate scenarios. In other coasts, like that of the Rhine-Meuse Delta (the Netherlands), risks range from erosion caused by periods of flooding to the degradation of wetland sites caused by extreme droughts. In coastal Peru, population pressures pose the primary risk to archaeological sites through rapid agro-industrial growth, urban expansion, and El Niño climate variability. Across all risks, we propose that management strategies to mitigate losses to biocultural resources must be approached as a restoration process of linked sociocultural and physical environmental systems. 
    more » « less
  2. Storm surge flooding caused by tropical cyclones is a devastating threat to coastal regions, and this threat is growing due to sea-level rise (SLR). Therefore, accurate and rapid projection of the storm surge hazard is critical for coastal communities. This study focuses on developing a new framework that can rapidly predict storm surges under SLR scenarios for any random synthetic storms of interest and assign a probability to its likelihood. The framework leverages the Joint Probability Method with Response Surfaces (JPM-RS) for probabilistic hazard characterization, a storm surge machine learning model, and a SLR model. The JPM probabilities are based on historical tropical cyclone track observations. The storm surge machine learning model was trained based on high-fidelity storm surge simulations provided by the U.S. Army Corps of Engineers (USACE). The SLR was considered by adding the product of the normalized nonlinearity, arising from surge-SLR interaction, and the sea-level change from 1992 to the target year, where nonlinearities are based on high-fidelity storm surge simulations and subsequent analysis by USACE. In this study, this framework was applied to the Chesapeake Bay region of the U.S. and used to estimate the SLR-adjusted probabilistic tropical cyclone flood hazard in two areas: One is an urban Virginia site, and the other is a rural Maryland site. This new framework has the potential to aid in reducing future coastal storm risks in coastal communities by providing robust and rapid hazard assessment that accounts for future sea-level rise. 
    more » « less
  3. Although shell middens and mounds often occupy the same intertidal spaces as coastal wetlands, biophysical interactions between these cultural features and wetlands are under-investigated. To this end, our geoarchaeological and zooarchaeological research at three coastal archaeological sites within the Tampa Bay Estuary, USA, sought to understand the interactions between shell-bearing sites, sea-level rise, storms, and migrating wetland habitats. Percussion core transects document the accretion of mangrove peat atop intact shell midden, illustrating the ability of mangrove forests to encroach shell midden and preserve cultural material below. Landward wetland deposits are thicker and muddier than those along the seaward margin of the sites, suggesting that shell-bearing sites attenuate wave energy much like other shoreline stabilization structures. Differences in sedimentology, stratigraphy, and invertebrate species compositions highlight the variability in storm impacts between sites. Storm-driven depositional events are identified by medium-to-fine sand beds with high densities of fragmented shell and small intertidal zone snails. Geospatial analyses indicate that wetland encroachment is already occurring at 247 archaeological sites within the Tampa Bay Estuary. Approximately 100 additional archaeological sites currently located in upland habitats may provide topographic relief for migrating coastal wetlands in the future. We contend that shell middens and mounds constructed by Indigenous peoples are important components within estuarine mosaics, as they have been for millennia. We advocate for further collaboration between archaeologists and estuary managers and the inclusion of descendant communities to co-manage the future of their past. 
    more » « less
  4. Abstract At coastal archaeological sites, measuring erosion rates and assessing artifact loss are vital to understanding the timescale(s) and spatial magnitude of past and future site loss. We describe a straightforward low-tech methodology for documenting shoreline erosion developed by professionals and volunteers over seven years at Calusa Island Midden (8LL45), one of the few remaining sites with an Archaic component in the Pine Island Sound region of coastal Southwest Florida. We outline the evolution of the methodology since its launch in 2016 and describe issues encountered and solutions implemented. We also describe the use of the data to guide archaeological research and document the impacts of major storms at the site. The response to Hurricane Ian in 2022 is one example of how simply collected data can inform site management. This methodology can be implemented easily at other coastal sites at low cost and in collaboration with communities, volunteers, and heritage site managers. 
    more » « less
  5. Coastal flooding from tropical cyclone (TC)‐induced storm surges is among the most devastating natural hazards in the US. Accurately quantifying storm surge hazards is crucial for risk mitigation and climate adaptation. In this study, we conduct climatology‐hydrodynamic modeling to estimate TC surge hazards along the US northeast coastline under future climate scenarios. In this methodology, we generate synthetic TCs for the northeastern US to drive a hydrodynamic model (ADCIRC) to simulate storm surges. Observing their significant effect on storm surge, for the first time, we bias‐correct landfall angles of synthetic TCs, in addition to bias‐correcting their frequency and intensity. Our findings show that under the combined effects of sea level rise (SLR) and TC climatology change, historical 100‐year extreme water levels (EWLs) along the US northeast coastline would occur annually at the end of the century in both SSP2‐4.5 and SSP5‐8.5 emissions scenarios. 500‐year EWLs are also projected to occur every 1–60 (1–20) years under SSP2‐4.5 (SSP5‐8.5). SLR is the dominant factor in the dramatic changes in the EWLs. However, while in higher latitudes () TC climatology change modestly affect EWLs ( contribution for 100‐year and for 500‐year EWL changes), in lower latitudes the impact is more significant (up to 40% contribution to 100‐year and 55% for 500‐year EWL changes). Extending previous methods, the physics‐based probabilistic framework presented here can be applied to project future coastal flood hazards under the effects of SLR and storm climatology change for any TC‐prone region. 
    more » « less