skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Second-Order Provable Defenses against Adversarial Attacks
A robustness certificate is the minimum distance of a given input to the decision boundary of the classifier (or its lower bound). For {\it any} input perturbations with a magnitude smaller than the certificate value, the classification output will provably remain unchanged. Exactly computing the robustness certificates for neural networks is difficult since it requires solving a non-convex optimization. In this paper, we provide computationally-efficient robustness certificates for neural networks with differentiable activation functions in two steps. First, we show that if the eigenvalues of the Hessian of the network are bounded, we can compute a robustness certificate in the l2 norm efficiently using convex optimization. Second, we derive a computationally-efficient differentiable upper bound on the curvature of a deep network. We also use the curvature bound as a regularization term during the training of the network to boost its certified robustness. Putting these results together leads to our proposed {\bf C}urvature-based {\bf R}obustness {\bf C}ertificate (CRC) and {\bf C}urvature-based {\bf R}obust {\bf T}raining (CRT). Our numerical results show that CRT leads to significantly higher certified robust accuracy compared to interval-bound propagation (IBP) based training. We achieve certified robust accuracy 69.79\%, 57.78\% and 53.19\% while IBP-based methods achieve 44.96\%, 44.74\% and 44.66\% on 2,3 and 4 layer networks respectively on the MNIST-dataset.  more » « less
Award ID(s):
1942230
PAR ID:
10207639
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Conference on Machine Learning (ICML)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Graph convolution networks (GCNs) have become effective models for graph classification. Similar to many deep networks, GCNs are vulnerable to adversarial attacks on graph topology and node attributes. Recently, a number of effective attack and defense algorithms have been designed, but no certificate of robustness has been developed for GCN-based graph classification under topological perturbations with both local and global budgets. In this paper, we propose the first certificate for this problem. Our method is based on Lagrange dualization and convex envelope, which result in tight approximation bounds that are efficiently computable by dynamic programming. When used in conjunction with robust training, it allows an increased number of graphs to be certified as robust. 
    more » « less
  2. Formal certification of Neural Networks (NNs) is crucial for ensuring their safety, fairness, and robustness. Unfortunately, on the one hand, sound and complete certification algorithms of ReLU-based NNs do not scale to large-scale NNs. On the other hand, incomplete certification algorithms are easier to compute, but they result in loose bounds that deteriorate with the depth of NN, which diminishes their effectiveness. In this paper, we ask the following question; can we replace the ReLU activation function with one that opens the door to incomplete certification algorithms that are easy to compute but can produce tight bounds on the NN's outputs? We introduce DeepBern-Nets, a class of NNs with activation functions based on Bernstein polynomials instead of the commonly used ReLU activation. Bernstein polynomials are smooth and differentiable functions with desirable properties such as the so-called range enclosure and subdivision properties. We design a novel Interval Bound Propagation (IBP) algorithm, called Bern-IBP, to efficiently compute tight bounds on DeepBern-Nets outputs. Our approach leverages the properties of Bernstein polynomials to improve the tractability of neural network certification tasks while maintaining the accuracy of the trained networks. We conduct experiments in adversarial robustness and reachability analysis settings to assess the effectiveness of the approach. Our proposed framework achieves high certified accuracy for adversarially-trained NNs, which is often a challenging task for certifiers of ReLU-based NNs. This work establishes Bernstein polynomial activation as a promising alternative for improving NN certification tasks across various NNs applications. 
    more » « less
  3. null (Ed.)
    Several recent results provide theoretical insights into the phenomena of adversarial examples. Existing results, however, are often limited due to a gap between the simplicity of the models studied and the complexity of those deployed in practice. In this work, we strike a better balance by considering a model that involves learning a representation while at the same time giving a precise generalization bound and a robustness certificate. We focus on the hypothesis class obtained by combining a sparsity-promoting encoder coupled with a linear classifier, and show an interesting interplay between the expressivity and stability of the (supervised) representation map and a notion of margin in the feature space. We bound the robust risk (to $$\ell_2$$-bounded perturbations) of hypotheses parameterized by dictionaries that achieve a mild encoder gap on training data. Furthermore, we provide a robustness certificate for end-to-end classification. We demonstrate the applicability of our analysis by computing certified accuracy on real data, and compare with other alternatives for certified robustness. 
    more » « less
  4. X.509 certificate revocation defends against man-in-the-middle attacks involving a compromised certificate. Certificate revocation strategies face scalability, effectiveness, and deployment challenges as HTTPS adoption rates have soared. We propose Certificate Revocation Table (CRT), a new revocation strategy that is competitive with or exceeds alternative state-of-the-art solutions in effectiveness, efficiency, certificate growth scalability, mass revocation event scalability, revocation timeliness, privacy, and deployment requirements. The CRT design assumes that locality of reference applies to the certificates accessed by an organization. The CRT periodically checks the revocation status of X.509 certificates recently used by the organization. Pre-checking the revocation status of certificates the clients are likely to use avoids the security problems of on-demand certificate revocation checking. To validate both the effectiveness and efficiency of our approach, we simulated a CRT using 60 days of TLS traffic logs from Brigham Young University to measure the effects of actively refreshing revocation status information for various certificate working set window lengths. A working set window size of 45 days resulted in an average of 99.86% of the TLS handshakes having revocation information cached in advance. The CRT storage requirements are small. The initial revocation status information requires downloading a 6.7 MB file, and subsequent updates require only 205.1 KB of bandwidth daily. Updates that include only revoked certificates require just 215 bytes of bandwidth per day. 
    more » « less
  5. Defenses against adversarial attacks can be classified into certified and non-certified. Certifiable defenses make networks robust within a certain -bounded radius, so that it is impossible for the adversary to make adversarial examples in the certificate bound. We present an attack that maintains the imperceptibility property of adversarial examples while being outside of the certified radius. Furthermore, the proposed "Shadow Attack" can fool certifiably robust networks by producing an imperceptible adversarial example that gets misclassified and produces a strong ``spoofed'' certificate. 
    more » « less