skip to main content


Title: Certified Robustness of Graph Convolution Networks for Graph Classification under Topological Attacks
Graph convolution networks (GCNs) have become effective models for graph classification. Similar to many deep networks, GCNs are vulnerable to adversarial attacks on graph topology and node attributes. Recently, a number of effective attack and defense algorithms have been designed, but no certificate of robustness has been developed for GCN-based graph classification under topological perturbations with both local and global budgets. In this paper, we propose the first certificate for this problem. Our method is based on Lagrange dualization and convex envelope, which result in tight approximation bounds that are efficiently computable by dynamic programming. When used in conjunction with robust training, it allows an increased number of graphs to be certified as robust.  more » « less
Award ID(s):
1910146
NSF-PAR ID:
10299608
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    The recent development of high-throughput sequencing has created a large collection of multi-omics data, which enables researchers to better investigate cancer molecular profiles and cancer taxonomy based on molecular subtypes. Integrating multi-omics data has been proven to be effective for building more precise classification models. Most current multi-omics integrative models use either an early fusion in the form of concatenation or late fusion with a separate feature extractor for each omic, which are mainly based on deep neural networks. Due to the nature of biological systems, graphs are a better structural representation of bio-medical data. Although few graph neural network (GNN) based multi-omics integrative methods have been proposed, they suffer from three common disadvantages. One is most of them use only one type of connection, either inter-omics or intra-omic connection; second, they only consider one kind of GNN layer, either graph convolution network (GCN) or graph attention network (GAT); and third, most of these methods have not been tested on a more complex classification task, such as cancer molecular subtypes.

    Results

    In this study, we propose a novel end-to-end multi-omics GNN framework for accurate and robust cancer subtype classification. The proposed model utilizes multi-omics data in the form of heterogeneous multi-layer graphs, which combine both inter-omics and intra-omic connections from established biological knowledge. The proposed model incorporates learned graph features and global genome features for accurate classification. We tested the proposed model on the Cancer Genome Atlas (TCGA) Pan-cancer dataset and TCGA breast invasive carcinoma (BRCA) dataset for molecular subtype and cancer subtype classification, respectively. The proposed model shows superior performance compared to four current state-of-the-art baseline models in terms of accuracy, F1 score, precision, and recall. The comparative analysis of GAT-based models and GCN-based models reveals that GAT-based models are preferred for smaller graphs with less information and GCN-based models are preferred for larger graphs with extra information.

     
    more » « less
  2. Graph Convolutional Networks (GCNs) have emerged as the state-of-the-art deep learning model for representation learning on graphs. However, it remains notoriously challenging to train and inference GCNs over large graph datasets, limiting their application to large real-world graphs and hindering the exploration of deeper and more sophisticated GCN graphs. This is because as the graph size grows, the sheer number of node features and the large adjacency matrix can easily explode the required memory and data movements. To tackle the aforementioned challenges, we explore the possibility of drawing lottery tickets when sparsifying GCN graphs, i.e., subgraphs that largely shrink the adjacency matrix yet are capable of achieving accuracy comparable to or even better than their full graphs. Specifically, we for the first time discover the existence of graph early-bird (GEB) tickets that emerge at the very early stage when sparsifying GCN graphs, and propose a simple yet effective detector to automatically identify the emergence of such GEB tickets. Furthermore, we advocate graph-model co-optimization and develop a generic efficient GCN early-bird training framework dubbed GEBT that can significantly boost the efficiency of GCN training by (1) drawing joint early-bird tickets between the GCN graphs and models and (2) enabling simultaneously sparsification of both the GCN graphs and models. Experiments on various GCN models and datasets consistently validate our GEB finding and the effectiveness of our GEBT, e.g., our GEBT achieves up to 80.2% ~ 85.6% and 84.6% ~ 87.5% savings of GCN training and inference costs while offering a comparable or even better accuracy as compared to state-of-the-art methods. Our source code and supplementary appendix are available at https://github.com/RICE-EIC/Early-Bird-GCN. 
    more » « less
  3. Graph convolutional neural networks (GCNs) embed nodes in a graph into Euclidean space, which has been shown to incur a large distortion when embedding real-world graphs with scale-free or hierarchical structure. Hyperbolic geometry offers an exciting alternative, as it enables embeddings with much smaller distortion. However, extending GCNs to hyperbolic geometry presents several unique challenges because it is not clear how to define neural network operations, such as feature transformation and aggregation, in hyperbolic space. Furthermore, since input features are often Euclidean, it is unclear how to transform the features into hyperbolic embeddings with the right amount of curvature. Here we propose Hyperbolic Graph Convolutional Neural Network (HGCN), the first inductive hyperbolic GCN that leverages both the expressiveness of GCNs and hyperbolic geometry to learn inductive node representations for hierarchical and scale-free graphs. We derive GCNs operations in the hyperboloid model of hyperbolic space and map Euclidean input features to embeddings in hyperbolic spaces with different trainable curvature at each layer. Experiments demonstrate that HGCN learns embeddings that preserve hierarchical structure, and leads to improved performance when compared to Euclidean analogs, even with very low dimensional embeddings: compared to state-of-the-art GCNs, HGCN achieves an error reduction of up to 63.1% in ROC AUC for link prediction and of up to 47.5% in F1 score for node classification, also improving state-of-the art on the PubMed dataset. 
    more » « less
  4. null (Ed.)
    Learning the low-dimensional representations of graphs (i.e., network embedding) plays a critical role in network analysis and facilitates many downstream tasks. Recently graph convolutional networks (GCNs) have revolutionized the field of network embedding, and led to state-of-the-art performance in network analysis tasks such as link prediction and node classification. Nevertheless, most of the existing GCN-based network embedding methods are proposed for unsigned networks. However, in the real world, some of the networks are signed, where the links are annotated with different polarities, e.g., positive vs. negative. Since negative links may have different properties from the positive ones and can also significantly affect the quality of network embedding. Thus in this paper, we propose a novel network embedding framework SNEA to learn Signed Network Embedding via graph Attention. In particular, we propose a masked self-attentional layer, which leverages self-attention mechanism to estimate the importance coefficient for pair of nodes connected by different type of links during the embedding aggregation process. Then SNEA utilizes the masked self-attentional layers to aggregate more important information from neighboring nodes to generate the node embeddings based on balance theory. Experimental results demonstrate the effectiveness of the proposed framework through signed link prediction task on several real-world signed network datasets. 
    more » « less
  5. In recent years, plentiful evidence illustrates that Graph Con- volutional Networks (GCNs) achieve extraordinary accom- plishments on the node classification task. However, GCNs may be vulnerable to adversarial attacks on label-scarce dy- namic graphs. Many existing works aim to strengthen the ro- bustness of GCNs; for instance, adversarial training is used to shield GCNs against malicious perturbations. However, these works fail on dynamic graphs for which label scarcity is a pressing issue. To overcome label scarcity, self-training attempts to iteratively assign pseudo-labels to highly confi- dent unlabeled nodes but such attempts may suffer serious degradation under dynamic graph perturbations. In this paper, we generalize noisy supervision as a kind of self-supervised learning method and then propose a novel Bayesian self- supervision model, namely GraphSS, to address the issue. Extensive experiments demonstrate that GraphSS can not only affirmatively alert the perturbations on dynamic graphs but also effectively recover the prediction of a node classifier when the graph is under such perturbations. These two advan- tages prove to be generalized over three classic GCNs across five public graph datasets. 
    more » « less