skip to main content


Title: Certifying Confidence via Randomized Smoothing
Randomized smoothing has been shown to provide good certified-robustness guarantees for high-dimensional classification problems. It uses the probabilities of predicting the top two most-likely classes around an input point under a smoothing distribution to generate a certified radius for a classifier's prediction. However, most smoothing methods do not give us any information about the confidence with which the underlying classifier (e.g., deep neural network) makes a prediction. In this work, we propose a method to generate certified radii for the prediction confidence of the smoothed classifier. We consider two notions for quantifying confidence: average prediction score of a class and the margin by which the average prediction score of one class exceeds that of another. We modify the Neyman-Pearson lemma (a key theorem in randomized smoothing) to design a procedure for computing the certified radius where the confidence is guaranteed to stay above a certain threshold. Our experimental results on CIFAR-10 and ImageNet datasets show that using information about the distribution of the confidence scores allows us to achieve a significantly better certified radius than ignoring it. Thus, we demonstrate that extra information about the base classifier at the input point can help improve certified guarantees for the smoothed classifier.  more » « less
Award ID(s):
1942230
NSF-PAR ID:
10207641
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Advances in Neural Information Processing Systems Foundation (NeurIPS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Patch adversarial attacks on images, in which the attacker can distort pixels within a region of bounded size, are an important threat model since they provide a quantitative model for physical adversarial attacks. In this paper, we introduce a certifiable defense against patch attacks that guarantees for a given image and patch attack size, no patch adversarial examples exist. Our method is related to the broad class of randomized smoothing robustness schemes which provide high-confidence probabilistic robustness certificates. By exploiting the fact that patch attacks are more constrained than general sparse attacks, we derive meaningfully large robustness certificates against them. Additionally, in contrast to smoothing-based defenses against L_p and sparse attacks, our defense method against patch attacks is de-randomized, yielding improved, deterministic certificates. Compared to the existing patch certification method proposed by Chiang et al. (2020), which relies on interval bound propagation, our method can be trained significantly faster, achieves high clean and certified robust accuracy on CIFAR-10, and provides certificates at ImageNet scale. For example, for a 5-by-5 patch attack on CIFAR-10, our method achieves up to around 57.6% certified accuracy (with a classifier with around 83.8% clean accuracy), compared to at most 30.3% certified accuracy for the existing method (with a classifier with around 47.8% clean accuracy). Our results effectively establish a new state-of-the-art of certifiable defense against patch attacks on CIFAR-10 and ImageNet. 
    more » « less
  2. Randomized smoothing, using just a simple isotropic Gaussian distribution, has been shown to produce good robustness guarantees against ℓ2-norm bounded adversaries. In this work, we show that extending the smoothing technique to defend against other attack models can be challenging, especially in the high-dimensional regime. In particular, for a vast class of i.i.d. smoothing distributions, we prove that the largest ℓp-radius that can be certified decreases as O(1/d12−1p) with dimension d for p>2. Notably, for p≥2, this dependence on d is no better than that of the ℓp-radius that can be certified using isotropic Gaussian smoothing, essentially putting a matching lower bound on the robustness radius. When restricted to generalized Gaussian smoothing, these two bounds can be shown to be within a constant factor of each other in an asymptotic sense, establishing that Gaussian smoothing provides the best possible results, up to a constant factor, when p≥2. We present experimental results on CIFAR to validate our theory. For other smoothing distributions, such as, a uniform distribution within an ℓ1 or an ℓ∞-norm ball, we show upper bounds of the form O(1/d) and O(1/d1−1p) respectively, which have an even worse dependence on d. 
    more » « less
  3. null (Ed.)
    Randomized smoothing, using just a simple isotropic Gaussian distribution, has been shown to produce good robustness guarantees against ℓ2-norm bounded adversaries. In this work, we show that extending the smoothing technique to defend against other attack models can be challenging, especially in the high-dimensional regime. In particular, for a vast class of i.i.d.~smoothing distributions, we prove that the largest ℓp-radius that can be certified decreases as O(1/d12−1p) with dimension d for p>2. Notably, for p≥2, this dependence on d is no better than that of the ℓp-radius that can be certified using isotropic Gaussian smoothing, essentially putting a matching lower bound on the robustness radius. When restricted to {\it generalized} Gaussian smoothing, these two bounds can be shown to be within a constant factor of each other in an asymptotic sense, establishing that Gaussian smoothing provides the best possible results, up to a constant factor, when p≥2. We present experimental results on CIFAR to validate our theory. For other smoothing distributions, such as, a uniform distribution within an ℓ1 or an ℓ∞-norm ball, we show upper bounds of the form O(1/d) and O(1/d1−1p) respectively, which have an even worse dependence on d. 
    more » « less
  4. null (Ed.)
    We show a hardness result for random smoothing to achieve certified adversarial robustness against attacks in the ℓp ball of radius ϵ when p>2. Although random smoothing has been well understood for the ℓ2 case using the Gaussian distribution, much remains unknown concerning the existence of a noise distribution that works for the case of p>2. This has been posed as an open problem by Cohen et al. (2019) and includes many significant paradigms such as the ℓ∞ threat model. In this work, we show that any noise distribution D over Rd that provides ℓp robustness for all base classifiers with p>2 must satisfy E[η_i^2]=Ω(d^(1−2/p) ϵ^2(1−δ)/δ^2) for 99% of the features (pixels) of vector η∼D, where ϵ is the robust radius and δ is the score gap between the highest-scored class and the runner-up. Therefore, for high-dimensional images with pixel values bounded in [0,255], the required noise will eventually dominate the useful information in the images, leading to trivial smoothed classifiers. 
    more » « less
  5. null (Ed.)
    We show a hardness result for random smoothing to achieve certified adversarial robustness against attacks in the ℓp ball of radius ϵ when p>2. Although random smoothing has been well understood for the ℓ2 case using the Gaussian distribution, much remains unknown concerning the existence of a noise distribution that works for the case of p>2. This has been posed as an open problem by Cohen et al. (2019) and includes many significant paradigms such as the ℓ∞ threat model. In this work, we show that any noise distribution D over R^d that provides ℓp robustness for all base classifiers with p>2 must satisfy E[η_i^2]= Ω(d^(1−2/p) ϵ^2 (1−δ)/δ^2) for 99% of the features (pixels) of vector η∼D, where ϵ is the robust radius and δ is the score gap between the highest-scored class and the runner-up. Therefore, for high-dimensional images with pixel values bounded in [0,255], the required noise will eventually dominate the useful information in the images, leading to trivial smoothed classifiers. 
    more » « less