skip to main content

Title: Robust Optimal Transport with Applications in Generative Modeling and Domain Adaptation
Optimal Transport (OT) distances such as Wasserstein have been used in several areas such as GANs and domain adaptation. OT, however, is very sensitive to outliers (samples with large noise) in the data since in its objective function, every sample, including outliers, is weighed similarly due to the marginal constraints. To remedy this issue, robust formulations of OT with unbalanced marginal constraints have previously been proposed. However, employing these methods in deep learning problems such as GANs and domain adaptation is challenging due to the instability of their dual optimization solvers. In this paper, we resolve these issues by deriving a computationally-efficient dual form of the robust OT optimization that is amenable to modern deep learning applications. We demonstrate the effectiveness of our formulation in two applications of GANs and domain adaptation. Our approach can train state-of-the-art GAN models on noisy datasets corrupted with outlier distributions. In particular, our optimization computes weights for training samples reflecting how difficult it is for those samples to be generated in the model. In domain adaptation, our robust OT formulation leads to improved accuracy compared to the standard adversarial adaptation methods.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Advances in Neural Information Processing Systems Foundation (NeurIPS)
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The widespread use of distributed energy sources (DERs) raises significant challenges for power system design, planning, and operation, leading to wide adaptation of tools on hosting capacity analysis (HCA). Traditional HCA methods conduct extensive power flow analysis. Due to the computation burden, these time-consuming methods fail to provide online hosting capacity (HC) in large distribution systems. To solve the problem, we first propose a deep learning-based problem formulation for HCA, which conducts offline training and determines HC in real time. The used learning model, long short-term memory (LSTM), implements historical time-series data to capture periodical patterns in distribution systems. However, directly applying LSTMs suffers from low accuracy due to the lack of consideration on spatial information, where location information like feeder topology is critical in nodal HCA. Therefore, we modify the forget gate function to dual forget gates, to capture the spatial correlation within the grid. Such a design turns the LSTM into the Spatial-Temporal LSTM (ST-LSTM). Moreover, as voltage violations are the most vital constraints in HCA, we design a voltage sensitivity gate to increase accuracy further. The results of LSTMs and ST-LSTMs on feeders, such as IEEE 34-, 123-bus feeders, and utility feeders, validate our designs. 
    more » « less
  2. The scarcity of labeled data has traditionally been the primary hindrance in building scalable supervised deep learning models that can retain adequate performance in the presence of various heterogeneities in sample distributions. Domain adaptation tries to address this issue by adapting features learned from a smaller set of labeled samples to that of the incoming unlabeled samples. The traditional domain adaptation approaches normally consider only a single source of labeled samples, but in real world use cases, labeled samples can originate from multiple-sources – providing motivation for multi-source domain adaptation (MSDA). Several MSDA approaches have been investigated for wearable sensor-based human activity recognition (HAR) in recent times, but their performance improvement compared to single source counterpart remained marginal. To remedy this performance gap that, we explore multiple avenues to align the conditional distributions in addition to the usual alignment of marginal ones. In our investigation, we extend an existing multi-source domain adaptation approach under semi-supervised settings. We assume the availability of partially labeled target domain data and further explore the pseudo labeling usage with a goal to achieve a performance similar to the former. In our experiments on three publicly available datasets, we find that a limited labeled target domain data and pseudo label data boost the performance over the unsupervised approach by 10-35% and 2-6%, respectively, in various domain adaptation scenarios. 
    more » « less
  3. In many applications, data is easy to acquire but expensive and time-consuming to label, prominent examples include medical imaging and NLP. This disparity has only grown in recent years as our ability to collect data improves. Under these constraints, it makes sense to select only the most informative instances from the unlabeled pool and request an oracle (e.g., a human expert) to provide labels for those samples. The goal of active learning is to infer the informativeness of unlabeled samples so as to minimize the number of requests to the oracle. Here, we formulate active learning as an open-set recognition problem. In this paradigm, only some of the inputs belong to known classes; the classifier must identify the rest as unknown . More specifically, we leverage variational neural networks (VNNs), which produce high-confidence (i.e., low-entropy) predictions only for inputs that closely resemble the training data. We use the inverse of this confidence measure to select the samples that the oracle should label. Intuitively, unlabeled samples that the VNN is uncertain about contain features that the network has not been exposed to; thus they are more informative for future training. We carried out an extensive evaluation of our novel, probabilistic formulation of active learning, achieving state-of-the-art results on MNIST, CIFAR-10, CIFAR-100, and FashionMNIST. Additionally, unlike current active learning methods, our algorithm can learn even in the presence of out-of-distribution outliers. As our experiments show, when the unlabeled pool consists of a mixture of samples from multiple datasets, our approach can automatically distinguish between samples from seen vs. unseen datasets. Overall, our results show that high-quality uncertainty measures are key for pool-based active learning. 
    more » « less
  4. (Ed.)
    We consider statistical methods that invoke a min-max distributionally robust formulation to extract good out-of-sample performance in data-driven optimization and learning problems. Acknowledging the distributional uncertainty in learning from limited samples, the min-max formulations introduce an adversarial inner player to explore unseen covariate data. The resulting distributionally robust optimization (DRO) formulations, which include Wasserstein DRO formulations (our main focus), are specified using optimal transportation phenomena. Upon describing how these infinite-dimensional min-max problems can be approached via a finite-dimensional dual reformulation, this tutorial moves into its main component, namely, explaining a generic recipe for optimally selecting the size of the adversary’s budget. This is achieved by studying the limit behavior of an optimal transport projection formulation arising from an inquiry on the smallest confidence region that includes the unknown population risk minimizer. Incidentally, this systematic prescription coincides with those in specific examples in high-dimensional statistics and results in error bounds that are free from the curse of dimensions. Equipped with this prescription, we present a central limit theorem for the DRO estimator and provide a recipe for constructing compatible confidence regions that are useful for uncertainty quantification. The rest of the tutorial is devoted to insights into the nature of the optimizers selected by the min-max formulations and additional applications of optimal transport projections. 
    more » « less
  5. Optimal Transport (OT) naturally arises in many machine learning applications, yet the heavy computational burden limits its wide-spread uses. To address the scalability issue, we propose an implicit generative learning-based framework called SPOT (Scalable Push-forward of Optimal Transport). Specifically, we approximate the optimal transport plan by a pushforward of a reference distribution, and cast the optimal transport problem into a minimax problem. We then can solve OT problems efficiently using primal dual stochastic gradient-type algorithms. We also show that we can recover the density of the optimal transport plan using neural ordinary differential equations. Numerical experiments on both synthetic and real datasets illustrate that SPOT is robust and has favorable convergence behavior. SPOT also allows us to efficiently sample from the optimal transport plan, which benefits downstream applications such as domain adaptation. 
    more » « less