Optimal Transport (OT) distances such as Wasserstein have been used in several areas such as GANs and domain adaptation. OT, however, is very sensitive to outliers (samples with large noise) in the data since in its objective function, every sample, including outliers, is weighed similarly due to the marginal constraints. To remedy this issue, robust formulations of OT with unbalanced marginal constraints have previously been proposed. However, employing these methods in deep learning problems such as GANs and domain adaptation is challenging due to the instability of their dual optimization solvers. In this paper, we resolve these issues by deriving a computationally-efficient dual form of the robust OT optimization that is amenable to modern deep learning applications. We demonstrate the effectiveness of our formulation in two applications of GANs and domain adaptation. Our approach can train state-of-the-art GAN models on noisy datasets corrupted with outlier distributions. In particular, our optimization computes weights for training samples reflecting how difficult it is for those samples to be generated in the model. In domain adaptation, our robust OT formulation leads to improved accuracy compared to the standard adversarial adaptation methods.
Outlier-Robust Optimal Transport
Optimal transport (OT) measures distances between distributions in a way that depends on the geometry of the sample space. In light of recent advances in computational OT, OT distances are widely used as loss functions in machine learning. Despite their prevalence and advantages, OT loss functions can be extremely sensitive to outliers. In fact, a single adversarially-picked outlier can increase the standard W2-distance arbitrarily. To address this issue, we propose an outlier-robust formulation of OT. Our formulation is convex but challenging to scale at a first glance. Our main contribution is deriving an \emph{equivalent} formulation based on cost truncation that is easy to incorporate into modern algorithms for computational OT. We demonstrate the benefits of our formulation in mean estimation problems under the Huber contamination model in simulations and outlier detection tasks on real data.
- Award ID(s):
- 1838071
- Publication Date:
- NSF-PAR ID:
- 10310382
- Journal Name:
- International Conference on Machine Learning
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Optimal transport (OT) is a popular tool in machine learning to compare probability measures geometrically, but it comes with substantial computational burden. Linear programming algorithms for computing OT distances scale cubically in the size of the input, making OT impractical in the large-sample regime. We introduce a practical algorithm, which relies on a quantization step, to estimate OT distances between measures given cheap sample access. We also provide a variant of our algorithm to improve the performance of approximate solvers, focusing on those for entropy-regularized transport. We give theoretical guarantees on the benefits of this quantization step and display experiments showing that it behaves well in practice, providing a practical approximation algorithm that can be used as a drop-in replacement for existing OT estimators.
-
In many machine learning applications, it is necessary to meaningfully aggregate, through alignment, different but related datasets. Optimal transport (OT)-based approaches pose alignment as a divergence minimization problem: the aim is to transform a source dataset to match a target dataset using the Wasserstein distance as a divergence measure. We introduce a hierarchical formulation of OT which leverages clustered structure in data to improve alignment in noisy, ambiguous, or multimodal settings. To solve this numerically, we propose a distributed ADMM algorithm that also exploits the Sinkhorn distance, thus it has an efficient computational complexity that scales quadratically with the size of the largest cluster. When the transformation between two datasets is unitary, we provide performance guarantees that describe when and how well aligned cluster correspondences can be recovered with our formulation, as well as provide worst-case dataset geometry for such a strategy. We apply this method to synthetic datasets that model data as mixtures of low-rank Gaussians and study the impact that different geometric properties of the data have on alignment. Next, we applied our approach to a neural decoding application where the goal is to predict movement directions and instantaneous velocities from populations of neurons in the macaque primarymore »
-
This work proposes a new computational framework for learning a structured generative model for real-world datasets. In particular, we propose to learn a Closed-loop Transcriptionbetween a multi-class, multi-dimensional data distribution and a Linear discriminative representation (CTRL) in the feature space that consists of multiple independent multi-dimensional linear subspaces. In particular, we argue that the optimal encoding and decoding mappings sought can be formulated as a two-player minimax game between the encoder and decoderfor the learned representation. A natural utility function for this game is the so-called rate reduction, a simple information-theoretic measure for distances between mixtures of subspace-like Gaussians in the feature space. Our formulation draws inspiration from closed-loop error feedback from control systems and avoids expensive evaluating and minimizing of approximated distances between arbitrary distributions in either the data space or the feature space. To a large extent, this new formulation unifies the concepts and benefits of Auto-Encoding and GAN and naturally extends them to the settings of learning a both discriminative and generative representation for multi-class and multi-dimensional real-world data. Our extensive experiments on many benchmark imagery datasets demonstrate tremendous potential of this new closed-loop formulation: under fair comparison, visual quality of the learned decoder and classification performancemore »
-
null (Ed.)We propose a new family of depth measures called the elastic depths that can be used to greatly improve shape anomaly detection in functional data. Shape anomalies are functions that have considerably different geometric forms or features from the rest of the data. Identifying them is generally more difficult than identifying magnitude anomalies because shape anomalies are often not distinguishable from the bulk of the data with visualization methods. The proposed elastic depths use the recently developed elastic distances to directly measure the centrality of functions in the amplitude and phase spaces. Measuring shape outlyingness in these spaces provides a rigorous quantification of shape, which gives the elastic depths a strong theoretical and practical advantage over other methods in detecting shape anomalies. A simple boxplot and thresholding method is introduced to identify shape anomalies using the elastic depths. We assess the elastic depth’s detection skill on simulated shape outlier scenarios and compare them against popular shape anomaly detectors. Finally, we use hurricane trajectories to demonstrate the elastic depth methodology on manifold valued functional data.