Abstract The high strength of boron carbide (B4C) is essential in its engineering applications such as wear‐resistance and body armors. Here, by employing density functional theory simulations, we demonstrated that the strength of B4C can be enhanced by doping lithium to boron‐rich boron carbide (B13C2) to form r‐LiB13C2. The bonding analysis on r‐LiB13C2indicates that the electron counting rule (or Wade's rule) is satisfied in r‐LiB13C2whose formula can be written as r‐Li+(B12)2‐(CB+C). The shear deformation on r‐LiB13C2indicates that its ideal shear strength is larger than that of B4C because of the existing of Li dopant. The failure process of r‐LiB13C2under ideal shear deformation initiates from breaking the icosahedral‐icosahedral B‐B bonds. Then these B atoms react with the middle B in the C‐B‐C chain, resulting in the disintegration of icosahedral clusters and brittle failure. More interesting, the nanotwinned r‐LiB13C2is even stronger than r‐LiB13C2because of the directional nature of covalent bonding at the twin boundaries. This suggests that the nanotwinned r‐LiB13C2has a significant enhanced strength compared to B4C. Our simulation results illustrate the deformation mechanism of Li‐doped boron carbide and its nanotwinned microstructure. We proposed to improve the strength of boron carbide by doping Li into B13C2and increasing its twin densities.
more »
« less
Decoupling and Coupling of the Host–Dopant Interaction by Manipulating Dopant Movement in Core/Shell Quantum Dots
- Award ID(s):
- 1944978
- PAR ID:
- 10207672
- Date Published:
- Journal Name:
- The journal of physical chemistry letters
- Volume:
- 11
- Issue:
- 15
- ISSN:
- 1948-7185
- Page Range / eLocation ID:
- 5992 - 5999
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Achieving high electrical conductivity and thermoelectric power factor simultaneously for n‐type organic thermoelectrics is still challenging. By constructing two new acceptor‐acceptor n‐type conjugated polymers with different backbones and introducing the 3,4,5‐trimethoxyphenyl group to form the new n‐type dopant 1,3‐dimethyl‐2‐(3,4,5‐trimethoxyphenyl)‐2,3‐dihydro‐1H‐benzo[d]imidazole (TP‐DMBI), high electrical conductivity of 11 S cm−1and power factor of 32 μW m−1 K−2are achieved. Calculations using Density Functional Theory show that TP‐DMBI presents a higher singly occupied molecular orbital (SOMO) energy level of −1.94 eV than that of the common dopant 4‐(1, 3‐dimethyl‐2, 3‐dihydro‐1H‐benzoimidazol‐2‐yl) phenyl) dimethylamine (N‐DMBI) (−2.36 eV), which can result in a larger offset between the SOMO of dopant and lowest unoccupied molecular orbital (LUMO) of n‐type polymers, though that effect may not be dominant in the present work. The doped polymer films exhibit higher Seebeck coefficient and power factor than films using N‐DMBI at the same doping levels or similar electrical conductivity levels. Moreover, TP‐DMBI doped polymer films offer much higher electron mobility of up to 0.53 cm2 V−1 s−1than films with N‐DMBI doping, demonstrating the potential of TP‐DMBI, and 3,4,5‐trialkoxy DMBIs more broadly, for high performance n‐type organic thermoelectrics.more » « less