skip to main content


Title: Site-selective [2 + 2 + n ] cycloadditions for rapid, scalable access to alkynylated polycyclic aromatic hydrocarbons
Polycyclic aromatic hydrocarbons (PAHs) are attractive synthetic building blocks for more complex conjugated nanocarbons, but their use for this purpose requires appreciable quantities of a PAH with reactive functional groups. Despite tremendous recent advances, most synthetic methods cannot satisfy these demands. Here we present a general and scalable [2 + 2 + n ] ( n = 1 or 2) cycloaddition strategy to access PAHs that are decorated with synthetically versatile alkynyl groups and its application to seven structurally diverse PAH ring systems (thirteen new alkynylated PAHs in total). The critical discovery is the site-selectivity of an Ir-catalyzed [2 + 2 + 2] cycloaddition, which preferentially cyclizes tethered diyne units with preservation of other (peripheral) alkynyl groups . The potential for generalization of the site-selectivity to other [2 + 2 + n ] reactions is demonstrated by identification of a Cp 2 Zr-mediated [2 + 2 + 1]/metallacycle transfer sequence for synthesis of an alkynylated, selenophene-annulated PAH. The new PAHs are excellent synthons for macrocyclic conjugated nanocarbons. As a proof of concept, four were subjected to alkyne metathesis catalysis to afford large, PAH-containing arylene ethylene macrocycles, which possess a range of cavity sizes reaching well into the nanometer regime. Notably, these high-yielding macrocyclizations establish that synthetically convenient pentynyl groups can be effective for metathesis since the 4-octyne byproduct is sequestered by 5 Å MS. Most importantly, this work is a demonstration of how site-selective reactions can be harnessed to rapidly build up structural complexity in a practical, scalable fashion.  more » « less
Award ID(s):
1708210
NSF-PAR ID:
10207943
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Chemical Science
Volume:
11
Issue:
11
ISSN:
2041-6520
Page Range / eLocation ID:
3028 to 3035
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A new N-alkynylated dithieno[3,2- b :2′,3′- d ]pyrrole (DTP) monomer was synthesized using a Buchwald–Hartwig amination of 3,3′-dibromo-2,2′-bithiophene with pent-4-yn-1-amine. The obtained monomer was investigated for the possibility of a pre-polymerization modification via Huisgen 1,3-dipolar cycloaddition (“click”) reaction with azide-containing organic compounds. The synthesized N-alkynylated DTP monomer is soluble in a number of organic solvents and reacts with organic azides via “click” reactions in mild conditions, achieving high yields. The N-alkynylated DTP monomer and its “click”-modified derivative can be electropolymerized to form polymeric films. Herein, the synthesis and characterization of a “click” modified DTP monomer, its pre-modified derivative, and their corresponding polymers are described. The developed method is a facile route to synthesize a new generation of various N-functionalized DTP homopolymers. 
    more » « less
  2. Abstract

    A copper‐catalyzed dearomative alkynylation of pyridines is reported with excellent regio‐ and enantioselectivities. The synthetically valuable enantioenriched 2‐alkynyl‐1,2‐dihydropyridine products afforded are generated from the readily available feedstock, pyridine, and commercially available terminal alkynes. The three‐component reaction between a pyridine, a terminal alkyne, and methyl chloroformate employs copper chloride and StackPhos, a chiral biarylP,N‐ligand, as the catalytic system. Under mild reaction conditions, the desired 1,2‐addition products are delivered in up to 99 % yield with regioselectivity ratios up to 25 : 1 and enantioselectivities values of up to 99 % ee. Activated and non‐activated terminal alkynes containing a wide range of functional groups are well tolerated. Even acetylene gas delivered mono‐alkynylated products in high yield and ee. Application of the methodology in an efficient enantioselective synthesis of the chiral piperidine indolizidine, coniceine, is reported.

     
    more » « less
  3. Abstract

    A copper‐catalyzed dearomative alkynylation of pyridines is reported with excellent regio‐ and enantioselectivities. The synthetically valuable enantioenriched 2‐alkynyl‐1,2‐dihydropyridine products afforded are generated from the readily available feedstock, pyridine, and commercially available terminal alkynes. The three‐component reaction between a pyridine, a terminal alkyne, and methyl chloroformate employs copper chloride and StackPhos, a chiral biarylP,N‐ligand, as the catalytic system. Under mild reaction conditions, the desired 1,2‐addition products are delivered in up to 99 % yield with regioselectivity ratios up to 25 : 1 and enantioselectivities values of up to 99 % ee. Activated and non‐activated terminal alkynes containing a wide range of functional groups are well tolerated. Even acetylene gas delivered mono‐alkynylated products in high yield and ee. Application of the methodology in an efficient enantioselective synthesis of the chiral piperidine indolizidine, coniceine, is reported.

     
    more » « less
  4. Recent developments in speleothem science are showing their potential for paleofire reconstruction through a variety of inorganic and organic proxies including trace metals (1) and the pyrogenic organic compound levoglucosan (2). Previous work by Argiriadis et al. (2019) presented a method for the analysis of trace polycyclic aromatic hydrocarbons (PAHs) and n -alkanes in stalagmites (3). These compounds reflect biogeochemical processes occurring at the land surface, in the soil, and in the cave. PAHs are primarily related to combustion of biomass while n-alkanes, with their potential for vegetation reconstruction (4), provide information on fuel availability and composition, as well as fire activity. These organic molecules are carried downward by infiltrating water and incorporated into speleothems (5), thereby creating the potential to serve as novel paleofire archives. Using this approach, we developed a high-resolution stalagmite record of paleofire activity from cave KNI-51 in tropical northwestern Australia. This site is well suited for high resolution paleofire reconstruction as bushfire activity in this tropical savanna is some of the highest on the continent, the cave is shallow and overlain by extremely thin soils, and the stalagmites are fast-growing (1-2 mm yr-1) and precisely dated. We analyzed three stalagmites which grew continuously in different time intervals through the last millennium - KNI-51-F (CE ~1100-1620), KNI-51-G (CE ~1320-1640), and KNI-51-11 (CE ~1750-2009). Samples were drilled continuously at 1-3 mm resolution from stalagmite slabs, processed in a stainless-steel cleanroom to prevent contamination. Despite a difference in resolution between stalagmites KNI-51-F and -G, peaks in the target compounds show good replication in the overlapping time interval of the two stalagmites, and PAH abundances in a portion of stalagmite KNI-51-11 that grew from CE 2000-2009 are well correlated with satellite-mapped fires occurring proximally to the cave. Our results suggest an increase in the frequency of low intensity fire in the 20th century relative to much of the previous millennium. The timing of this shift is broadly coincident with the arrival of European pastoralists in the late 19th century and the subsequent displacement of Aboriginal peoples from the land. Aboriginal peoples had previously utilized “fire stick farming”, a method of prescribed, low intensity burning, that was an important influence of ecology, biomass, and fire. Prior to the late 1800s, the period with the most frequent low intensity fire activity was the 13th century, the wettest interval of the entire record. Peak high intensity fire activity occurred during the 12th century. Controlled burn and irrigation experiments capable of examining the transmission of pyrogenic compounds from the land surface to cave dripwater represent the next step in this analysis. Given that karst is present in many fire-prone environments, and that stalagmites can be precisely dated and grow continuously for millennia, the potential utility of a stalagmite-based paleofire proxy is high. (1) L.K. McDonough et al., Geochim. Cosmochim. Acta. 325, 258–277 (2022). (2) J. Homann et al., Nat. Commun., 13:7175 (2022). (3) E. Argiriadis et al., Anal. Chem. 91, 7007–7011 (2019). (4) R.T. Bush, F. A. McInerney, Geochim. Cosmochim. Acta. 117, 161–179 (2013). (5) Y. Sun et al., Chemosphere. 230, 616–627 (2019). 
    more » « less
  5. The synthesis of polycyclic aromatic hydrocarbons (PAHs) and related nanographenes requires the selective and efficient fusion of multiple aromatic rings. For this purpose, the Diels–Alder cycloaddition has proven especially useful; however, this approach currently faces significant limitations, including the lack of versatile strategies to access annulated dienes, the instability of the most commonly used dienes, and difficulties with aromatization of the [4 + 2] adduct. In this report we address these limitations via the marriage of two powerful cycloaddition strategies. First, a formal Cp 2 Zr-mediated [2 + 2 + 1] cycloaddition is used to generate a stannole-annulated PAH. Secondly, the stannoles are employed as diene components in a [4 + 2] cycloaddition/aromatization cascade with an aryne, enabling π-extension to afford a larger PAH. This discovery of stannoles as highly reactive – yet stable for handling – diene equivalents, and the development of a modular strategy for their synthesis, should significantly extend the structural scope of PAHs accessible by a [4 + 2] cycloaddition approach. 
    more » « less