Abstract Dearomative cycloadditions offer rapid access to complex 3D molecular architectures, commonly via a sp2‐to‐sp3rehybridization of two atoms of an aromatic ring. Here we report that the 6e π‐system of a benzenoid aromatic pendant could be exhaustively depleted within a single photochemical cascade. An implementation of this approach involves the initial dearomative [4+2] cycloaddition of the Excited State Intramolecular Proton Transfer (ESIPT)‐generated azaxylylene, followed by two consecutive [2+2] cycloadditions of auxiliary π moieties strategically positioned in the photoprecursor. Such photochemical cascade fully dearomatizes the benzenoid aromatic ring, saturating all six sp2atoms to yield a complex sp3‐rich scaffold with high control of its 3D molecular shape, rendering it a robust platform for rapid systematic mapping of underexplored chemical space. Significant growth of molecular complexity—starting with a modular synthesis of photoprecursors from readily available building blocks—is quantified by Böttcher score calculations.
more »
« less
Facile access to fused 2D/3D rings via intermolecular cascade dearomative [2 + 2] cycloaddition/rearrangement reactions of quinolines with alkenes
Abstract Hybrid fused two-dimensional/three-dimensional (2D/3D) rings are important pharmacophores in drugs owing to their unique structural and physicochemical properties. Preparation of these strained ring systems often requires elaborate synthetic effort and exhibits low efficiency, thus representing a limiting factor in drug discovery. Here, we report two types of energy-transfer-mediated cascade dearomative [2 + 2] cycloaddition/rearrangement reactions of quinoline derivatives with alkenes, which provide a straightforward avenue to 2D/3D pyridine-fused 6−5−4−3- and 6−4−6-membered ring systems. Notably, this energy-transfer-mediated strategy features excellent diastereoselectivity that bypasses the general reactivity and selectivity issues of photochemical [2 + 2] cycloaddition of various other aromatics. Tuning the aza-arene substitutions enabled selective diversion of the iridium photocatalysed energy transfer manifold towards either cyclopropanation or cyclobutane-rearrangement products. Density functional theory calculations revealed a cascade energy transfer scenario to be operative.
more »
« less
- PAR ID:
- 10354887
- Date Published:
- Journal Name:
- Nature Catalysis
- Volume:
- 5
- Issue:
- 5
- ISSN:
- 2520-1158
- Page Range / eLocation ID:
- 405 to 413
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Explored was the competitive ring-closing metathesis vs. ring-rearrangement metathesis of bicyclo[3.2.1]octenes prepared by a simple and convergent synthesis from bicyclic alkylidenemalono-nitriles and allylic electrophiles. It was uncovered that ring-closing metathesis occurs exclusively on the tetraene-variant, yielding unique, stereochemically and functionally rich polycyclic bridged frameworks, whereas the reduced version (a triene) undergoes ring-rearrangement metathesis to 5 – 6 – 5 fused ring systems resembling the isoryanodane core.more » « less
-
null (Ed.)Brønsted acid catalyzed formal [4 + 4]-, [4 + 3]-, and [4 + 2]-cycloadditions of donor–acceptor cyclobutenes, cyclopropenes, and siloxyalkynes with benzopyrylium ions are reported. [4 + 2]-cyclization/deMayo-type ring-extension cascade processes produce highly functionalized benzocyclooctatrienes, benzocycloheptatrienes, and 2-naphthols in good to excellent yields and selectivities. Moreover, the optical purity of reactant donor–acceptor cyclobutenes is fully retained during the cascade. The 1,3-dicarbonyl product framework of the reaction products provides opportunities for salen-type ligand syntheses and the construction of fused pyrazoles and isoxazoles that reveal a novel rotamer-diastereoisomerism.more » « less
-
The synthesis of polycyclic aromatic hydrocarbons (PAHs) and related nanographenes requires the selective and efficient fusion of multiple aromatic rings. For this purpose, the Diels–Alder cycloaddition has proven especially useful; however, this approach currently faces significant limitations, including the lack of versatile strategies to access annulated dienes, the instability of the most commonly used dienes, and difficulties with aromatization of the [4 + 2] adduct. In this report we address these limitations via the marriage of two powerful cycloaddition strategies. First, a formal Cp 2 Zr-mediated [2 + 2 + 1] cycloaddition is used to generate a stannole-annulated PAH. Secondly, the stannoles are employed as diene components in a [4 + 2] cycloaddition/aromatization cascade with an aryne, enabling π-extension to afford a larger PAH. This discovery of stannoles as highly reactive – yet stable for handling – diene equivalents, and the development of a modular strategy for their synthesis, should significantly extend the structural scope of PAHs accessible by a [4 + 2] cycloaddition approach.more » « less
-
Abstract A new complexity building photoinduced cascade which amounts to an unprecedented formal [4+2+2+2] cycloaddition topology is developed to access complex nitrogen polyheterocycles. This photocascade is initiated by the excited state intramolecular proton transfer (ESIPT) in aromatic amino ketones with tethered dual unsaturated pendants, i.e. pyrrole and alkenic moieties, resulting in the formation of four σ‐bonds and setting six new stereogenic centers in a single experimentally simple photochemical step with up to 220 mcbit complexity increases.more » « less
An official website of the United States government

