skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-performance ammonia-selective MFI nanosheet membranes
Nanosheet-based MFI membranes, known to be highly selective for hydrocarbon isomer separations, exhibit an NH 3 /N 2 mixture separation factor of 2236 with NH 3 permeance of 1.1 × 10 −6 mol m −2 s −1 Pa −1 , and NH 3 /H 2 separation factor of 307 with NH 3 permeance of 2.3 × 10 −6 mol m −2 s −1 Pa −1 at room temperature. Consistent with a competitive sorption-based separation, lower operating temperatures and higher pressures result in increased separation factor. At 323 K, with an equimolar mixed feed of NH 3 /N 2 , the fluxes and separation factors at 3 and 7 bar are 0.13 mol m −2 s −1 and 191, and 0.26 mol m −2 s −1 and 220, respectively. This performance compares favorably with that of other membranes and suggests that MFI membranes can be used in separation and purification processes involving mixtures of NH 3 /N 2 /H 2 encountered in ammonia synthesis and utilization. The membranes also exhibit high performance for the separation of ethane, n -propane and n -butane from H 2 .  more » « less
Award ID(s):
1705687
PAR ID:
10207972
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Chemical Communications
ISSN:
1359-7345
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Isothermal membrane-based air dehumidification (IMAD) is much more energy-efficient and economical than traditional air-dehumidification technologies. There are, however, no practical IMAD process technologies currently available mainly due to limitations of current membranes. Ionic liquids (ILs) are a promising air-dehumidification membrane material. Current supported IL membranes suffer from poor stability, limiting their performances. Herein, we propose new stable IL membranes, encapsulated IL membranes (EILMs) by encapsulating 1-butyl-3-methylimidazolium bromide ([C 4 MIM][Br]) into ultrathin polycrystalline UiO-66-NH 2 metal–organic framework membranes via a ship-in-a-bottle method. The stability of IL membranes is significantly enhanced due to the IL entrapped in the pore cages of UiO-66-NH 2 . The EILMs show unprecedentedly high H 2 O permeance (∼2.36 × 10 −4 mol m −2 s −1 Pa −1 ), an order of magnitude greater than that of the most permeable air-dehumidification membranes reported so far. Furthermore, the encapsulated [C 4 MIM][Br] drastically increases the H 2 O/N 2 separation factor to ∼1560, satisfying the minimally required H 2 O/N 2 separation performance for commercially viable air-dehumidification. 
    more » « less
  2. Abstract Vapor phase ligand treatment (VPLT) of 2‐aminobenzimidazole (2abIm) for 2‐methylimidazole (2mIm) in ZIF‐8 membranes prepared by two different methods (LIPS: ligand induced permselectivation and RTD: rapid thermal deposition) results in a notable shift of the molecular level cut‐off to smaller molecules establishing selectivity improvements from ca. 1.8 to 5 for O2/N2; 2.2 to 32 for CO2/CH4; 2.4 to 24 for CO2/N2; 4.8 to 140 for H2/CH4and 5.2 to 126 for H2/N2. Stable (based on a one‐week test) oxygen‐selective air separation performance at ambient temperature, 7 bar(a) feed, and 1 bar(a) sweep‐free permeate with a mixture separation factor of 4.5 and oxygen flux of 2.6×10−3 mol m−2 s−1is established. LIPS and RTD membranes exhibit fast and gradual evolution upon a 2abIm‐VPLT, respectively, reflecting differences in their thickness and microstructure. Functional reversibility is demonstrated by showing that the original permeation properties of the VPLT‐LIPS membranes can be recovered upon 2mIm‐VPLT. 
    more » « less
  3. Abstract Xe is only produced by cryogenic distillation of air, and its availability is limited by the extremely low abundance. Therefore, Xe recovery after usage is the only way to guarantee sufficient supply and broad application. Herein we demonstrate DD3R zeolite as a benchmark membrane material for CO2/Xe separation. The CO2permeance after an optimized membrane synthesis is one order magnitude higher than for conventional membranes and is less susceptible to water vapour. The overall membrane performance is dominated by diffusivity selectivity of CO2over Xe in DD3R zeolite membranes, whereby rigidity of the zeolite structure plays a key role. For relevant anaesthetic composition (<5 % CO2) and condition (humid), CO2permeance and CO2/Xe selectivity stabilized at 2.0×10−8 mol m−2 s−1 Pa−1and 67, respectively, during long‐term operation (>320 h). This endows DD3R zeolite membranes great potential for on‐stream CO2removal from the Xe‐based closed‐circuit anesthesia system. The large cost reduction of up to 4 orders of magnitude by membrane Xe‐recycling (>99+%) allows the use of the precious Xe as anaesthetics gas a viable general option in surgery. 
    more » « less
  4. Abstract 2D layered nanomaterials have attracted considerable attention for their potential for highly efficient separations, among other applications. Here, a 2D lamellar membrane synthesized using hexagonal boron nitride nanoflakes (h‐BNF) for highly efficient ion separation is reported. The ion‐rejection performance and the water permeance of the membrane as a function of the ionic radius, ion valance, and solution pH are investigated. The nonfunctionalized h‐BNF membranes show excellent ion rejection for small sized salt ions as well as for anionic dyes (>97%) while maintaining a high water permeability, ≈1.0 × 10−3L m m−2h−1bar−1). Experiments show that the ion‐rejection performance of the membrane can be tuned by changing the solution pH. The results also suggest that the rejection is influenced by the ionic size and the electrostatic repulsion between fixed negative charges on the BN surface and the mobile ions, and is consistent with the Donnan equilibrium model. These simple‐to‐fabricate h‐BNF membranes show a unique combination of excellent ion selectivity and high permeability compared to other 2D membranes. 
    more » « less
  5. Bioinspired membranes offer an alternative approach to improving the fouling resistance of commercial membranes for oil separations. Here, two perfluoropolyether oils, a lower viscosity Krytox 103 (K103) and a higher viscosity Krytox 107 (K107), were infused into commercial polyvinylidene fluoride (PVDF) ultrafiltration membranes to mimic the Nepenthes pitcher plant. The transmembrane pressure required to perform long-term oil permeance tests was optimized by testing the liquid-infused membranes at different applied pressures. Crystal violet staining and variable pressure scanning electron microscopy qualitatively suggest that the oil layer remained on the membranes after the oil separation experiments were conducted. Over 5 cycles, K103- and K107- liquid-infused membranes exhibited a consistent permeance of ∼ 30000 L m-2h−1 bar−1 at 1.0 bar and ∼ 14500 L m-2h−1 bar−1 at 0.5 bar, respectively. The steady performance further supports a long-lasting oil layer persists on the membrane surface and inside membrane’s pores. Next, experiments were conducted to determine the stability of the Krytox oil post accelerated cleaning tests using bleach. No structural changes to the Krytox oils were detected by thermogravimetric analysis or nuclear magnetic resonance spectroscopy. Dynamic fouling experiments using Escherichia coli K12 revealed that the liquid-infused membranes had higher flux recovery ratios (∼95 %) than the bare PVDF control membranes (∼55 %). Our results demonstrate that liquid-infused membranes exhibit chlorine stability and superior fouling resistance, presenting a promising bioinspired membrane that can be used in pressure-driven oil separation applications. 
    more » « less