skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Fouling Resistant Liquid-Infused membranes for oil separations
Bioinspired membranes offer an alternative approach to improving the fouling resistance of commercial membranes for oil separations. Here, two perfluoropolyether oils, a lower viscosity Krytox 103 (K103) and a higher viscosity Krytox 107 (K107), were infused into commercial polyvinylidene fluoride (PVDF) ultrafiltration membranes to mimic the Nepenthes pitcher plant. The transmembrane pressure required to perform long-term oil permeance tests was optimized by testing the liquid-infused membranes at different applied pressures. Crystal violet staining and variable pressure scanning electron microscopy qualitatively suggest that the oil layer remained on the membranes after the oil separation experiments were conducted. Over 5 cycles, K103- and K107- liquid-infused membranes exhibited a consistent permeance of ∼ 30000 L m-2h−1 bar−1 at 1.0 bar and ∼ 14500 L m-2h−1 bar−1 at 0.5 bar, respectively. The steady performance further supports a long-lasting oil layer persists on the membrane surface and inside membrane’s pores. Next, experiments were conducted to determine the stability of the Krytox oil post accelerated cleaning tests using bleach. No structural changes to the Krytox oils were detected by thermogravimetric analysis or nuclear magnetic resonance spectroscopy. Dynamic fouling experiments using Escherichia coli K12 revealed that the liquid-infused membranes had higher flux recovery ratios (∼95 %) than the bare PVDF control membranes (∼55 %). Our results demonstrate that liquid-infused membranes exhibit chlorine stability and superior fouling resistance, presenting a promising bioinspired membrane that can be used in pressure-driven oil separation applications.  more » « less
Award ID(s):
1930610
PAR ID:
10555503
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Separation and Purification Technology
Volume:
358
Issue:
PA
ISSN:
1383-5866
Page Range / eLocation ID:
130253
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Membrane separations are simple to operate, scalable, versatile, and energy efficient, but their broader use is curtailed by fouling or performance decline due to feed component depositing on the membrane surface. Surface functionalization with groups such as zwitterions can mitigate the adsorption of organic compounds, thus limiting fouling. This can be achieved by using surface-segregating copolymer additives during membrane manufacture, but there is a need for better understanding of how the polymer structure and architecture affect the effectiveness of these additives in improving membrane performance. In this study, we aim to explore the impact of the architecture of zwitterionic copolymer additives for polyvinylidene fluoride (PVDF)-based membranes in fouling mitigation and ionic strength response. We prepared membranes from blends of PVDF with zwitterionic (ZI) copolymers with two different architectures, random and comb-shaped. As the random copolymer, we used poly(methyl methacrylate- random- sulfobetaine-2-vinyl pyridine) (PMMA- r -SB2VP) synthesized by free radical polymerization. The comb-shaped copolymer was synthesized by grafting SB2VP side-chains from a PVDF backbone by controlled radical polymerization. Membranes were fabricated from PVDF-copolymer blends containing up to 5 wt% ZI copolymer. Compared to the additive-free PVDF membrane, water permeance increased five-fold with 5 wt% addition of either copolymer. The comb copolymer additive led to better resistance to fouling by a saline oil-in-water emulsion and to simulated protein adsorption in Atomic Force Microscopy (AFM) force measurements. The additive architecture had a significant influence on how membranes respond to changes in feed salinity, which is known to affect intra- and inter-molecular interactions in zwitterionic polymers. The random copolymer containing membrane showed a small and mostly reversible decrease in its permeance with salinity. In contrast, the comb copolymer-containing membrane underwent a conformational reorganization in saline solutions that leads to an irreversible permeance decrease, increased zwitterionic group content on the membrane surface, and smoother surface topography. The higher mobility of the zwitterionic groups in the comb-shaped architecture facilitates reorganization of the zwitterionic side-chains in response to ionic strength. Overall, this study establishes a new approach for developing highly fouling resistant membranes and defines how the architecture of a zwitterionic copolymer additive impacts the ionic strength response and fouling resistance of the membrane. 
    more » « less
  2. Membrane fouling is a major issue in many membrane applications. There are numerous methods used in attempt to mitigate membrane fouling, with one method being membrane surface patterning. However, it is still unclear how the ratio of foulant size to pattern size affects membrane fouling. In this study, we investigated constant foulant size while varying the pattern size on the membrane surface to be smaller than (300-nm), equal to (10-μm), and larger than (50-μm) the foulant (10-μm) on polyamide nanofiltration membranes. These membranes were compared to a commercial nanofiltration membrane and a control flat synthesized membrane. The membranes were tested with water, 2000 ppm Na2SO4, and three cycles of a n-dodecane (as oil) brine solution in a dead-end cell to assess the fouling resistance and flux recovery ability of each polyamide membrane type. From the fouling experiments, it was determined that none of the pattern sizes significantly affect the flux recovery ratio, but smaller than and larger than patterns decreased the fouling rate on the polyamide membranes by a small margin. 
    more » « less
  3. null (Ed.)
    Simultaneous fouling and pore wetting of the membrane during membrane distillation (MD) is a major concern. In this work, an electrospun bilayer membrane for enhancing fouling and wetting resistance has been developed for treating hydraulic fracture-produced water (PW) by MD. These PWs can contain over 200,000 ppm total dissolved solids, organic compounds and surfactants. The membrane consists of an omniphobic surface that faces the permeate stream and a hydrophilic surface that faces the feed stream. The omniphobic surface was decorated by growing nanoparticles, followed by silanization to lower the surface energy. An epoxied zwitterionic polymer was grafted onto the membrane surface that faces the feed stream to form a tight antifouling hydration layer. The membrane was challenged with an aqueous NaCl solution containing sodium dodecyl sulfate (SDS), an ampholyte and crude oil. In the presence of SDS and crude oil, the membrane was stable and displayed salt rejection (>99.9%). Further, the decrease was much less than the base polyvinylidene difluoride (PVDF) electrospun membrane. The membranes were also challenged with actual PW. Our results highlight the importance of tuning the properties of the membrane surface that faces the feed and permeate streams in order to maximize membrane stability, flux and salt rejection. 
    more » « less
  4. Ultrafiltration (UF) is a common technique used in wastewater treatments. However, the issue of membrane fouling in UF can greatly hinder the effectiveness of the treatments. This study demonstrated a low-fouling composite cellulose membrane system based on microfibrillated cellulose (MFC) and silica nanoparticle additives. The incorporation of ‘non-spherical’ silica nanoparticles was found to exhibit better structural integration in the membrane (i.e., minimal aggregation of silica nanoparticles in the membrane scaffold) as compared to spherical silica. The resulting composite membranes were tested for UF using local wastewater, where the best-performing membrane exhibited higher permeation flux than commercial polyvinylidene difluoride (PVDF) and polyether sulfone (PES) membranes while maintaining a high separation efficiency (~99.6%) and good flux recovery ratio (>90%). The analysis of the fouling behavior using different models suggested that the processes of cake layer formation and pore-constriction were probably two dominant fouling mechanisms, likely due to the presence of humic substances in wastewater. The demonstrated cellulose composite membrane system showed low-fouling and high restoration capability by a simple hydraulic cleaning method due to the super hydrophilic nature of the cellulose scaffold containing silica nanoparticles. 
    more » « less
  5. Polymeric membranes fabricated via the nonsolvent-induced phase separation process rely heavily on toxic aprotic organic solvents, like N-methyl-pyrrolidine (NMP) and dimethylformamide. We suggest that the “saloplastic” nature of polyelectrolyte complexes (PECs) makes them an excellent candidate for fabricating next-generation water purification membranes that use a more sustainable aqueous phase separation process. In this study, we investigate how the properties of PECs and their interactions with salt can form pore-containing membranes from the strong polyelectrolytes poly(sodium 4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDADMAC) in the presence of potassium bromide (KBr). How the single-phase polymer-rich (coacervate) dope solution and coagulation bath impacted the formation, morphology, and pure water permeance (PWP) of the membranes was systematically evaluated by using scanning electron microscopy and dead-end filtration tests. The impact of a salt annealing post-treatment process was also tested; these treated PEC membranes exhibited a PWP of 6.2 L m–2 h–1 bar–1 and a dye removal of 91.7% and 80.5% for methyl orange and methylene blue, respectively, which are on par with commercial poly(ether sulfone) nanofiltration membranes. For the first time, we have demonstrated the ability of the PEC membranes to repel Escherichia coli bacteria under static conditions. Our fundamental study of polyelectrolyte membrane pore-forming mechanisms and separation performance could help drive the future development of sustainable materials for membrane-based separations. 
    more » « less