skip to main content


Title: State-specific projection of COVID-19 infection in the United States and evaluation of three major control measures
Abstract

Most models of the COVID-19 pandemic in the United States do not consider geographic variation and spatial interaction. In this research, we developed a travel-network-based susceptible-exposed-infectious-removed (SEIR) mathematical compartmental model system that characterizes infections by state and incorporates inflows and outflows of interstate travelers. Modeling reveals that curbing interstate travel when the disease is already widespread will make little difference. Meanwhile, increased testing capacity (facilitating early identification of infected people and quick isolation) and strict social-distancing and self-quarantine rules are most effective in abating the outbreak. The modeling has also produced state-specific information. For example, for New York and Michigan, isolation of persons exposed to the virus needs to be imposed within 2 days to prevent a broad outbreak, whereas for other states this period can be 3.6 days. This model could be used to determine resources needed before safely lifting state policies on social distancing.

 
more » « less
Award ID(s):
2027375
NSF-PAR ID:
10208001
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The novel coronavirus SARS-CoV-2 and resulting COVID-19 disease have had an unprecedented spread and continue to cause an increasing number of fatalities worldwide. While vaccines are still under development, social distancing, extensive testing, and quarantining of confirmed infected subjects remain the most effective measures to contain the pandemic. These measures carry a significant socioeconomic cost. In this work, we introduce a novel optimization-based decision-making framework for managing the COVID-19 outbreak in the US. This includes modeling the dynamics of affected populations, estimating the model parameters and hidden states from data, and an optimal control strategy for sequencing social distancing and testing events such that the number of infections is minimized. The analysis of our extensive computational efforts reveals that social distancing and quarantining are most effective when implemented early, with quarantining of confirmed infected subjects having a much higher impact. Further, we find that “on-off” policies alternating between strict social distancing and relaxing such restrictions can be effective at “flattening” the curve while likely minimizing social and economic cost.

     
    more » « less
  2. null (Ed.)
    Understanding the dynamics of the spread of COVID-19 between connected communities is fundamental in planning appropriate mitigation measures. To that end, we propose and analyze a novel metapopulation network model, particularly suitable for modeling commuter traffic patterns, that takes into account the connectivity between a heterogeneous set of communities, each with its own infection dynamics. In the novel metapopulation model that we propose here, transport schemes developed in optimal transport theory provide an efficient and easily implementable way of describing the temporary population redistribution due to traffic, such as the daily commuter traffic between work and residence. Locally, infection dynamics in individual communities are described in terms of a susceptible-exposed-infected-recovered (SEIR) compartment model, modified to account for the specific features of COVID-19, most notably its spread by asymptomatic and presymptomatic infected individuals. The mathematical foundation of our metapopulation network model is akin to a transport scheme between two population distributions, namely the residential distribution and the workplace distribution, whose interface can be inferred from commuter mobility data made available by the US Census Bureau. We use the proposed metapopulation model to test the dynamics of the spread of COVID-19 on two networks, a smaller one comprising 7 counties in the Greater Cleveland area in Ohio, and a larger one consisting of 74 counties in the Pittsburgh–Cleveland–Detroit corridor following the Lake Erie’s American coastline. The model simulations indicate that densely populated regions effectively act as amplifiers of the infection for the surrounding, less densely populated areas, in agreement with the pattern of infections observed in the course of the COVID-19 pandemic. Computed examples show that the model can be used also to test different mitigation strategies, including one based on state-level travel restrictions, another on county level triggered social distancing, as well as a combination of the two. 
    more » « less
  3. The outbreak of coronavirus disease 2019 (COVID-19) has led to significant challenges for schools and communities during the pandemic, requiring policy makers to ensure both safety and operational feasibility. In this paper, we develop mixed-integer programming models and simulation tools to redesign routes and bus schedules for operating a real university campus bus system during the COVID-19 pandemic. We propose a hub-and-spoke design and utilize real data of student activities to identify hub locations and bus stops to be used in the new routes. To reduce disease transmission via expiratory aerosol, we design new bus routes that are shorter than 15 minutes to travel and operate using at most 50% seat capacity and the same number of buses before the pandemic. We sample a variety of scenarios that cover variations of peak demand, social distancing requirements, and bus breakdowns to demonstrate the system resiliency of the new routes and schedules via simulation. The new bus routes were implemented and used during the academic year 2020–2021 to ensure social distancing and short travel time. Our approach can be generalized to redesign public transit systems with a social distancing requirement to reduce passengers’ infection risk. History: This paper was refereed. This article has been selected for inclusion in the Special Issue on Analytics Remedies to COVID-19. Funding: This work was supported by the National Science Foundation [Grant CMMI-2041745] and the University of Michigan, College of Engineering. 
    more » « less
  4. null (Ed.)
    Background Social distancing is an important component of the response to the COVID-19 pandemic. Minimizing social interactions and travel reduces the rate at which the infection spreads and “flattens the curve” so that the medical system is better equipped to treat infected individuals. However, it remains unclear how the public will respond to these policies as the pandemic continues. Objective The aim of this study is to present the Twitter Social Mobility Index, a measure of social distancing and travel derived from Twitter data. We used public geolocated Twitter data to measure how much users travel in a given week. Methods We collected 469,669,925 tweets geotagged in the United States from January 1, 2019, to April 27, 2020. We analyzed the aggregated mobility variance of a total of 3,768,959 Twitter users at the city and state level from the start of the COVID-19 pandemic. Results We found a large reduction (61.83%) in travel in the United States after the implementation of social distancing policies. However, the variance by state was high, ranging from 38.54% to 76.80%. The eight states that had not issued statewide social distancing orders as of the start of April ranked poorly in terms of travel reduction: Arkansas (45), Iowa (37), Nebraska (35), North Dakota (22), South Carolina (38), South Dakota (46), Oklahoma (50), Utah (14), and Wyoming (53). We are presenting our findings on the internet and will continue to update our analysis during the pandemic. Conclusions We observed larger travel reductions in states that were early adopters of social distancing policies and smaller changes in states without such policies. The results were also consistent with those based on other mobility data to a certain extent. Therefore, geolocated tweets are an effective way to track social distancing practices using a public resource, and this tracking may be useful as part of ongoing pandemic response planning. 
    more » « less
  5. Abstract

    Since the first case of the novel coronavirus disease (COVID-19) was confirmed in Wuhan, China, social distancing has been promoted worldwide, including in the United States, as a major community mitigation strategy. However, our understanding remains limited in how people would react to such control measures, as well as how people would resume their normal behaviours when those orders were relaxed. We utilize an integrated dataset of real-time mobile device location data involving 100 million devices in the contiguous United States (plus Alaska and Hawaii) from February 2, 2020 to May 30, 2020. Built upon the common human mobility metrics, we construct a Social Distancing Index (SDI) to evaluate people’s mobility pattern changes along with the spread of COVID-19 at different geographic levels. We find that both government orders and local outbreak severity significantly contribute to the strength of social distancing. As people tend to practice less social distancing immediately after they observe a sign of local mitigation, we identify several states and counties with higher risks of continuous community transmission and a second outbreak. Our proposed index could help policymakers and researchers monitor people’s real-time mobility behaviours, understand the influence of government orders, and evaluate the risk of local outbreaks.

     
    more » « less