skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards Defeating Backdoored Random Oracles: Indifferentiability with Bounded Adaptivity
In the backdoored random-oracle (BRO) model, besides access to a random function H , adversaries are provided with a backdoor oracle that can compute arbitrary leakage functions f of the function table of H . Thus, an adversary would be able to invert points, find collisions, test for membership in certain sets, and more. This model was introduced in the work of Bauer, Farshim, and Mazaheri (Crypto 2018) and extends the auxiliary-input idealized models of Unruh (Crypto 2007), Dodis, Guo, and Katz (Eurocrypt 2017), Coretti et al. (Eurocrypt 2018), and Coretti, Dodis, and Guo (Crypto 2018). It was shown that certain security properties, such as one-wayness, pseudorandomness, and collision resistance can be re-established by combining two independent BROs, even if the adversary has access to both backdoor oracles. In this work we further develop the technique of combining two or more independent BROs to render their backdoors useless in a more general sense. More precisely, we study the question of building an indifferentiable and backdoor-free random function by combining multiple BROs. Achieving full indifferentiability in this model seems very challenging at the moment. We however make progress by showing that the xor combiner goes well beyond security against preprocessing attacks and offers indifferentiability as long as the adaptivity of queries to different backdoor oracles remains logarithmic in the input size of the BROs. We even show that an extractor-based combiner of three BROs can achieve indifferentiability with respect to a linear adaptivity of backdoor queries. Furthermore, a natural restriction of our definition gives rise to a notion of indifferentiability with auxiliary input, for which we give two positive feasibility results. To prove these results we build on and refine techniques by Göös et al. (STOC 2015) and Kothari et al. (STOC 2017) for decomposing distributions with high entropy into distributions with more structure and show how they can be applied in the more involved adaptive settings.  more » « less
Award ID(s):
1815546
PAR ID:
10208486
Author(s) / Creator(s):
; ; ;
Editor(s):
Pass, Rafael; Pietrzak, Krzysztof
Date Published:
Journal Name:
Lecture notes in computer science
Volume:
12552
ISSN:
0302-9743
Page Range / eLocation ID:
241-273
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We revisit the problem of finding B-block-long collisions in Merkle-Damg˚ard Hash Functions in the auxiliary-input random oracle model, in which an attacker gets a piece of S-bit advice about the random oracle and makes T oracle queries. Akshima, Cash, Drucker and Wee (CRYPTO 2020), based on the work of Coretti, Dodis, Guo and Steinberger (EUROCRYPT 2018), showed a simple attack for 2 ≤ B ≤ T (with respect to a random salt). The attack achieves advantage Ω( e ST B/2 n + T 2/2 n) where n is the output length of the random oracle. They conjectured that this attack is optimal. However, this so-called STB conjecture was only proved for B ≈ T and B = 2. Very recently, Ghoshal and Komargodski (CRYPTO 22) confirmed STB conjecture for all constant values of B, and provided an Oe(S 4T B2/2 n + T 2/2 n) bound for all choices of B. In this work, we prove an Oe((ST B/2 n)· max{1, ST2/2 n}+T 2/2 n) bound for every 2 < B < T. Our bound confirms the STB conjecture for ST2 ≤ 2 n, and is optimal up to a factor of S for ST2 > 2 n (note as T 2 is always at most 2n, otherwise finding a collision is trivial by the birthday attack). Our result subsumes all previous upper bounds for all ranges of parameters except for B = Oe(1) and ST2 > 2 n. We obtain our results by adopting and refining the technique of Chung, Guo, Liu, and Qian (FOCS 2020). Our approach yields more modular proofs and sheds light on how to bypass the limitations of prior techniques. Along the way, we obtain a considerably simpler and illuminating proof for B = 2, recovering the main result of Akshima, Cash, Drucker and Wee. 
    more » « less
  2. Tessaro, Stefano (Ed.)
    A Proof of Sequential Work (PoSW) allows a prover to convince a resource-bounded verifier that the prover invested a substantial amount of sequential time to perform some underlying computation. PoSWs have many applications including time-stamping, blockchain design, and universally verifiable CPU benchmarks. Mahmoody, Moran, and Vadhan (ITCS 2013) gave the first construction of a PoSW in the random oracle model though the construction relied on expensive depth-robust graphs. In a recent breakthrough, Cohen and Pietrzak (EUROCRYPT 2018) gave an efficient PoSW construction that does not require expensive depth-robust graphs. In the classical parallel random oracle model, it is straightforward to argue that any successful PoSW attacker must produce a long ℋ-sequence and that any malicious party running in sequential time T-1 will fail to produce an ℋ-sequence of length T except with negligible probability. In this paper, we prove that any quantum attacker running in sequential time T-1 will fail to produce an ℋ-sequence except with negligible probability - even if the attacker submits a large batch of quantum queries in each round. The proof is substantially more challenging and highlights the power of Zhandry’s recent compressed oracle technique (CRYPTO 2019). We further extend this result to establish post-quantum security of a non-interactive PoSW obtained by applying the Fiat-Shamir transform to Cohen and Pietrzak’s efficient construction (EUROCRYPT 2018). 
    more » « less
  3. We study how to construct secure digital signature schemes in the presence of kleptographic attacks. Our work utilizes an offline watchdog to clip the power of subversions via only one-time black-box testing of the implementation. Previous results essentially rely on an online watchdog which requires the collection of all communicating transcripts (or active re-randomization of messages). We first give a simple but generic construction, without random oracles, in the partial-subversion model in which key generation and signing algorithms can be subverted. Then, we give the first digital signature scheme in the complete-subversion model in which all cryptographic algorithms can be subverted. This construction is based on the full-domain hash. Along the way, we enhance the recent result of Russell et al. (CRYPTO 2018) about correcting a subverted random oracle. 
    more » « less
  4. Dachman-Soled, Dana (Ed.)
    Pseudorandom number generators with input (PRNGs) are cryptographic algorithms that generate pseudorandom bits from accumulated entropic inputs (e.g., keystrokes, interrupt timings, etc.). This paper studies in particular PRNGs that are secure against premature next attacks (Kelsey et al., FSE '98), a class of attacks leveraging the fact that a PRNG may produce an output (which could be seen by an adversary!) before enough entropy has been accumulated. Practical designs adopt either unsound entropy-estimation methods to prevent such attacks (as in Linux’s /dev/random) or sophisticated pool-based approaches as in Yarrow (MacOS/FreeBSD) and Fortuna (Windows). The only prior theoretical study of premature next attacks (Dodis et al., Algorithmica '17) considers either a seeded setting or assumes constant entropy rate, and thus falls short of providing and validating practical designs. Assuming the availability of random seed is particularly problematic, first because this requires us to somehow generate a random seed without using our PRNG, but also because we must ensure that the entropy inputs to the PRNG remain independent of the seed. Indeed, all practical designs are seedless. However, prior works on seedless PRNGs (Coretti et al., CRYPTO '19; Dodis et al., ITC '21, CRYPTO'21) do not consider premature next attacks. The main goal of this paper is to investigate the feasibility of theoretically sound seedless PRNGs that are secure against premature next attacks. To this end, we make the following contributions: 1) We prove that it is impossible to achieve seedless PRNGs that are secure against premature-next attacks, even in a rather weak model. Namely, the impossibility holds even when the entropic inputs to the PRNG are independent. In particular, our impossibility result holds in settings where seedless PRNGs are otherwise possible. 2) Given the above impossibility result, we investigate whether existing seedless pool-based approaches meant to overcome premature next attacks in practical designs provide meaningful guarantees in certain settings. Specifically, we show the following. 3) We introduce a natural condition on the entropic input and prove that it implies security of the round-robin entropy accumulation PRNG used by Windows 10, called Fortuna. Intuitively, our condition requires the input entropy "not to vary too wildly" within a given round-robin round. 4) We prove that the "root pool" approach (also used in Windows 10) is secure for general entropy inputs, provided that the system’s state is not compromised after system startup. 
    more » « less
  5. The quantum random oracle model (QROM) has become the standard model in which to prove the post-quantum security of random-oracle-based constructions. Unfortunately, none of the known proof techniques allow the reduction to record information about the adversary’s queries, a crucial feature of many classical ROM proofs, including all proofs of indifferentiability for hash function domain extension. In this work, we give a new QROM proof technique that overcomes this “recording barrier”. We do so by giving a new “compressed oracle” which allows for efficient on-the-fly simulation of random oracles, roughly analogous to the usual classical simulation. We then use this new technique to give the first proof of quantum indifferentiability for the Merkle-Damgård domain extender for hash functions. We also give a proof of security for the Fujisaki-Okamoto transformation; previous proofs required modifying the scheme to include an additional hash term. Given the threat posed by quantum computers and the push toward quantum-resistant cryptosystems, our work represents an important tool for efficient post-quantum cryptosystems. 
    more » « less