skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nanoscale decoupling of electronic nematicity and structural anisotropy in FeSe thin films
Abstract In a material prone to a nematic instability, anisotropic strain in principle provides a preferred symmetry-breaking direction for the electronic nematic state to follow. This is consistent with experimental observations, where electronic nematicity and structural anisotropy typically appear hand-in-hand. In this work, we discover that electronic nematicity can be locally decoupled from the underlying structural anisotropy in strain-engineered iron-selenide (FeSe) thin films. We use heteroepitaxial molecular beam epitaxy to grow FeSe with a nanoscale network of modulations that give rise to spatially varying strain. We map local anisotropic strain by analyzing scanning tunneling microscopy topographs, and visualize electronic nematic domains from concomitant spectroscopic maps. While the domains form so that the energy of nemato-elastic coupling is minimized, we observe distinct regions where electronic nematic ordering fails to flip direction, even though the underlying structural anisotropy is locally reversed. The findings point towards a nanometer-scale stiffness of the nematic order parameter.  more » « less
Award ID(s):
1654041
PAR ID:
10208576
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Femtosecond spectroscopy of FeSe film shows distinct transient nematic behavior below and above superconducting critical temperature. Results reveal correlations between photoinduced nematicity, quasiparticle formation, superconducting and pseudogap openings, emphasizing electronic correlations and preformed electron pairing. 
    more » « less
  2. Exotic quantum solids can host electronic states that spontaneously break rotational symmetry of the electronic structure, such as electronic nematic phases and unidirectional charge density waves (CDWs). When electrons couple to the lattice, uniaxial strain can be used to anchor and control this electronic directionality. Here, we reveal an unusual impact of strain on unidirectional “smectic” CDW orders in kagome superconductors AV 3 Sb 5 using spectroscopic-imaging scanning tunneling microscopy. We discover local decoupling between the smectic electronic director axis and the direction of anisotropic strain. While the two can generally be aligned along the same direction in regions of a small CDW gap, the tendency for alignment decreases in regions where the CDW gap is the largest. This feature, in turn, suggests nanoscale variations in smectic susceptibility, which we attribute to a combination of local strain and electron correlation strength. Overall, we observe an unusually high decoupling rate between the smectic electronic director of the three-state Potts order and anisotropic strain, revealing weak smectoelastic coupling in the CDW phase of kagome superconductors. This finding is phenomenologically different from the extensively studied nematoelastic coupling in the Ising nematic phase of Ising nematic phase of Fe-based superconductor bulk single crystals, providing a contrasting picture of how strain can control electronic unidirectionality in different families of quantum materials. Published by the American Physical Society2025 
    more » « less
  3. Iron-chalcogenide superconductors FeSe1−xSxpossess unique electronic properties such as nonmagnetic nematic order and its quantum critical point. The nature of superconductivity with such nematicity is important for understanding the mechanism of unconventional superconductivity. A recent theory suggested the possible emergence of a fundamentally new class of superconductivity with the so-called Bogoliubov Fermi surfaces (BFSs) in this system. However, such an ultranodal pair state requires broken time-reversal symmetry (TRS) in the superconducting state, which has not been observed experimentally. Here, we report muon spin relaxation (μSR) measurements in FeSe1−xSxsuperconductors for0≤x≤0.22covering both orthorhombic (nematic) and tetragonal phases. We find that the zero-field muon relaxation rate is enhanced below the superconducting transition temperatureTcfor all compositions, indicating that the superconducting state breaks TRS both in the nematic and tetragonal phases. Moreover, the transverse-fieldμSR measurements reveal that the superfluid density shows an unexpected and substantial reduction in the tetragonal phase (x>0.17). This implies that a significant fraction of electrons remain unpaired in the zero-temperature limit, which cannot be explained by the known unconventional superconducting states with point or line nodes. The TRS breaking and the suppressed superfluid density in the tetragonal phase, together with the reported enhanced zero-energy excitations, are consistent with the ultranodal pair state with BFSs. The present results reveal two different superconducting states with broken TRS separated by the nematic critical point in FeSe1−xSx, which calls for the theory of microscopic origins that account for the relation between nematicity and superconductivity. 
    more » « less
  4. Polymers are a primary building block in many biomaterials, often interacting with anisotropic backgrounds. While previous studies have considered polymer dynamics within nematic solvents, rarely are the effects of anisotropic viscosity and polymer elongation differentiated. Here, we study polymers embedded in nematic liquid crystals with isotropic viscosity via numerical simulations to explicitly investigate the effect of nematicity on macromolecular conformation and how conformation alone can produce anisotropic dynamics. We employ a hybrid multi-particle collision dynamics and molecular dynamics technique that captures nematic orientation, thermal fluctuations and hydrodynamic interactions. The coupling of the polymer segments to the director field of the surrounding nematic elongates the polymer, producing anisotropic diffusion even in nematic solvents with isotropic viscosity. For intermediate coupling, the competition between background anisotropy and macromolecular entropy leads to hairpins – sudden kinks along the backbone of the polymer. Experiments of DNA embedded in a solution of rod-like fd viruses qualitatively support the role of hairpins in establishing characteristic conformational features that govern polymer dynamics. Hairpin diffusion along the backbone exponentially slows as coupling increases. Better understanding two-way coupling between polymers and their surroundings could allow the creation of more biomimetic composite materials. 
    more » « less
  5. We study two dimensional tactoids in nematic liquid crystals by using a Q -tensor representation. A bulk free energy of the Maier–Saupe form with eigenvalue constraints on Q , plus elastic terms up to cubic order in Q are used to understand the effects of anisotropic anchoring and Frank–Oseen elasticity on the morphology of nematic–isotropic domains. Further, a volume constraint is introduced to stabilize tactoids of any size at coexistence. We find that anisotropic anchoring results in differences in interface thickness depending on the relative orientation of the director at the interface, and that interfaces become biaxial for tangential alignment when anisotropy is introduced. For negative tactoids, surface defects induced by boundary topology become sharper with increasing elastic anisotropy. On the other hand, by parametrically studying their energy landscape, we find that surface defects do not represent the minimum energy configuration in positive tactoids. Instead, the interplay between Frank–Oseen elasticity in the bulk, and anisotropic anchoring yields semi-bipolar director configurations with non-circular interface morphology. Finally, we find that for growing tactoids the evolution of the director configuration is highly sensitive to the anisotropic term included in the free energy, and that minimum energy configurations may not be representative of kinetically obtained tactoids at long times. 
    more » « less