Abstract Described herein are the first total syntheses of (±)‐dracocephalone A (1) and (±)‐dracocequinones A (4) and B (5). The synthesis was initially envisioned as proceeding through an intramolecular isobenzofuran Diels–Alder reaction, a strategy that eventually evolved into a Lewis acid‐promoted spirocyclization. This highly diastereoselective transformation set the stage fortrans‐decalin formation and a late‐stage Suárez oxidation that produced a [3.2.1] oxabicycle suited for conversion to1. Brønsted acid‐mediated aromatization, followed by a series of carefully choreographed oxidations, allowed for rearrangement to a [2.2.2] oxabicycle poised for conversion to4and5.
more »
« less
Spatial and Temporal Variability of Nutrient Dynamics and Ecosystem Metabolism in a Hyper-eutrophic Reservoir Differ Between a Wet and Dry Year
More Like this
-
-
David Wipf (Ed.)Learning to optimize (L2O) is an emerging approach that leverages machine learning to develop optimization methods, aiming at reducing the laborious iterations of hand engineering. It automates the design of an optimization method based on its performance on a set of training problems. This data-driven procedure generates methods that can efficiently solve problems similar to those in training. In sharp contrast, the typical and traditional designs of optimization methods are theory-driven, so they obtain performance guarantees over the classes of problems specified by the theory. The difference makes L2O suitable for repeatedly solving a particular optimization problem over a specific distribution of data, while it typically fails on out-of-distribution problems. The practicality of L2O depends on the type of target optimization, the chosen architecture of the method to learn, and the training procedure. This new paradigm has motivated a community of researchers to explore L2O and report their findings. This article is poised to be the first comprehensive survey and benchmark of L2O for continuous optimization. We set up taxonomies, categorize existing works and research directions, present insights, and identify open challenges. We benchmarked many existing L2O approaches on a few representative optimization problems. For reproducible research and fair benchmarking purposes, we released our software implementation and data in the package Open-L2O at https://github.com/VITA-Group/Open-L2O.more » « less
-
The first compilations of Proterozoic eukaryote diversity, published in the 1980s showed a dramatic peak in the Tonian Period (1000–720 Ma), interpreted as the initial radiation of eukaryotes in the marine realm. Over the decades, new discoveries filled in the older part of the record and the peak diminished, but the idea of a Tonian radiation of eukaryotes has remained strong, and is now widely accepted as fact. We present a new diversity compilation based on 181 species and 713 species occurrences from 145 formations ranging in age from 1890 Ma to 720 Ma and find a significant increase in diversity in the Tonian. However, we also find that the number of eukaryotic species through time is highly correlated with the number of formations in our dataset (i.e. eukaryote-bearing formations) through time. This correlation is robust to interpretations of eukaryote affinity, bin size, and bin boundaries. We also find that within-assemblage diversity—a measure thought to circumvent sampling bias—is related to the number of eukaryote-bearing formations through time. Biomarkers show a similar pattern to body fossils, where the rise of eukaryotic biosignatures correlates with increased sampling. We find no evidence that the proportion of eukaryote-bearing versus all fossiliferous formations changed through the Proterozoic, as might be expected if the correlation reflected an increase in eukaryote diversity driving an increase in the number of eukaryote-bearing formations. Although the correlation could reflect a common cause such as changes in sea level driving both diversification and an increase in sedimentary rock volume, we favor the explanation that the pattern of early eukaryote diversity is driven by variations in paleontological sampling.more » « less
-
The dispersive interaction between a qubit and a cavity is ubiquitous in circuit and cavity quantum electrodynamics. It describes the frequency shift of one quantum mode in response to excitations in the other and, in closed systems, is necessarily bidirectional, i.e., reciprocal. Here, we present an experimental study of a nonreciprocal dispersive-type interaction between a transmon qubit and a superconducting cavity, arising from a common coupling to dissipative intermediary modes with broken time reversal symmetry. We characterize the qubit-cavity dynamics, including asymmetric frequency pulls and photon shot noise dephasing, under varying degrees of nonreciprocity by tuning the magnetic field bias of a ferrite component in situ. We introduce a general master equation model for nonreciprocal interactions in the dispersive regime, providing a compact description of the observed qubit-cavity dynamics agnostic to the intermediary system. Our result provides an example of quantum nonreciprocal phenomena beyond the typical paradigms of non-Hermitian Hamiltonians and cascaded systems.more » « less