skip to main content

Search for: All records

Award ID contains: 1930655

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change.
  2. Abstract. Waters impounded behind dams (i.e., reservoirs) areimportant sources of greenhouses gases (GHGs), especially methane (CH4), butemission estimates are not well constrained due to high spatial and temporalvariability, limitations in monitoring methods to characterize hot spot andhot moment emissions, and the limited number of studies that investigatediurnal, seasonal, and interannual patterns in emissions. In this study, weinvestigate the temporal patterns and biophysical drivers of CH4emissions from Acton Lake, a small eutrophic reservoir, using a combinationof methods: eddy covariance monitoring, continuous warm-season ebullitionmeasurements, spatial emission surveys, and measurements of key drivers ofCH4 production and emission. We used an artificial neural network togap fill the eddy covariance time series and to explore the relativeimportance of biophysical drivers on the interannual timescale. We combinedspatial and temporal monitoring information to estimate annualwhole-reservoir emissions. Acton Lake had cumulative areal emission rates of45.6 ± 8.3 and 51.4 ± 4.3 g CH4 m−2 in 2017 and 2018,respectively, or 109 ± 14 and 123 ± 10 Mg CH4 in 2017 and2018 across the whole 2.4 km2 area of the lake. The main differencebetween years was a period of elevated emissions lasting less than 2 weeksin the spring of 2018, which contributed 17 % of the annual emissions inthe shallow region of the reservoir. The spring burst coincided with aphytoplankton bloom, which was likely drivenmore »by favorable precipitation andtemperature conditions in 2018 compared to 2017. Combining spatiallyextensive measurements with temporally continuous monitoring enabled us toquantify aspects of the spatial and temporal variability in CH4emission. We found that the relationships between CH4 emissions andsediment temperature depended on location within the reservoir, and we observed a clearspatiotemporal offset in maximum CH4 emissions as a function ofreservoir depth. These findings suggest a strong spatial pattern in CH4biogeochemistry within this relatively small (2.4 km2) reservoir. Inaddressing the need for a better understanding of GHG emissions fromreservoirs, there is a trade-off in intensive measurements of one water bodyvs. short-term and/or spatially limited measurements in many waterbodies. The insights from multi-year, continuous, spatially extensivestudies like this one can be used to inform both the study design andemission upscaling from spatially or temporally limited results,specifically the importance of trophic status and intra-reservoirvariability in assumptions about upscaling CH4 emissions.« less