Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Agricultural land cover in the U.S. Midwest is a major source of nutrient pollution that has led to impairment of stream water quality. This study examines the impact of a forested state park on nutrient concentrations within an agriculturally dominated watershed. Water samples were collected over a 2‐year study period from eight stream sampling sites along four creeks and processed for total nitrogen (TN), nitrate (), total phosphorus (TP), and orthophosphate (). Hydrology, channel morphology, and remotely sensed land cover and vegetation data were also collected and analyzed within the study area. Results indicate that water quality responses to a forested state park vary between TN, , TP, and , and water quality variables are uniquely influenced by watershed and stream characteristics. The greatest water quality benefits most frequently occurred within the two smallest study streams with the greatest residence times and proportion of watershed areas within the forested state park. Overall, the greatest improvements to water quality occurred during periods of low stream discharge and when riparian vegetation was greenest. The results of this study suggest that conservation of forested areas within agriculturally dominated watersheds can provide water quality improvements in the U.S. Midwest. Targeting watersheds that drain small streams with long residence times for conservation may be most beneficial to improving water quality.more » « lessFree, publicly-accessible full text available August 1, 2025
-
Abstract In lakes, the rates of gross primary production (GPP), ecosystem respiration (R), and net ecosystem production (NEP) are often controlled by resource availability. Herein, we explore how catchment vs. within lake predictors of metabolism compare using data from 16 lakes spanning 39°N to 64°N, a range of inflowing streams, and trophic status. For each lake, we combined stream loads of dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorus (TP) with lake DOC, TN, and TP concentrations and high frequencyin situmonitoring of dissolved oxygen. We found that stream load stoichiometry indicated lake stoichiometry for C : N and C : P (r2 = 0.74 andr2 = 0.84, respectively), but not for N : P (r2 = 0.04). As we found a strong positive correlation between TN and TP, we only used TP in our statistical models. For the catchment model, GPP and R were best predicted by DOC load, TP load, and load N : P (R2 = 0.85 andR2 = 0.82, respectively). For the lake model, GPP and R were best predicted by TP concentrations (R2 = 0.86 andR2 = 0.67, respectively). The inclusion of N : P in the catchment model, but not the lake model, suggests that both N and P regulate metabolism and that organisms may be responding more strongly to catchment inputs than lake resources. Our models predicted NEP poorly, though it is unclear why. Overall, our work stresses the importance of characterizing lake catchment loads to predict metabolic rates, a result that may be particularly important in catchments experiencing changing hydrologic regimes related to global environmental change.more » « less
-
Abstract Nitrogen (N) and phosphorus (P) inputs influence algal community structure and function. The rates and ratios of N and P supply, and different N forms (e.g., NO3and NH4), from external loading and internal cycling can be highly seasonal. However, the interaction between seasonality in nutrient supply and algal nutrient limitation remains poorly understood. We examined seasonal variation in nutrient limitation and response to N form in a hyper‐eutrophic reservoir that experiences elevated, but seasonal, nutrient inputs and ratios. External N and P loading is high in spring and declines in summer, when internal loading because more important, reducing loading N:P ratios. Watershed NO3dominates spring N supply, but internal NH4supply becomes important during summer. We quantified how phytoplankton groups (diatoms, chlorophytes, and cyanobacteria) are limited by N or P, and their N form preference (NH4vs. NO3), with weekly experiments (May–October). Phytoplankton were P‐limited in spring, transitioned to N limitation or colimitation (primary N) in summer, and returned to P limitation following fall turnover. Under N limitation (or colimitation), chlorophytes and cyanobacteria were more strongly stimulated by NH4whereas diatoms were often equally, or more strongly, stimulated by NO3addition. Cyanobacteria heterocyte development followed the onset of N‐limiting conditions, with a several week lag time, but heterocyte production did not fully alleviate N‐limitation. We show that phytoplankton groups vary seasonally in limiting nutrient and N form preference, suggesting that dual nutrient management strategies incorporating both N and P, and N form are needed to manage eutrophication.more » « less
-
Many high school students learn about nutrient cycling during biology, environmental science, and agriculture classes. These lessons often focus on soil and plants, and nutrient cycling is usually taught independently from climate change. Scientists know that animals, including fish, can have strong effects on nutrient cycling (i.e., nitrogen and phosphorus) in ecosystems. Additionally, research has shown that nitrogen and phosphorus excretion rates of animals increase with water temperatures. We worked with high school students to design and conduct nutrient excretion experiments using common fish (zebrafish) to explore the impact of climate change on nutrient cycling. This allowed students to have hands-on laboratory experience. In 2021, we worked with students participating in a residential summer program in Georgia. Meanwhile, in 2022, students enrolled in the local high school visited the university campus on two occasions to participate in the experiments, and we once again worked with students in Georgia. Students from all three groups showed an increased understanding of the role of animals in nutrient cycling and ways climate change may impact these processes, despite variable results from the excretion experiments. Students also showed increased understanding of science processes and were more likely to feel like part of the science community. We believe that these experiments can be done in high school classrooms to expand students’ understanding of the scientific process, nutrient cycling, and climate change.more » « less
-
Abstract Trophic transfer efficiency (TTE) is usually calculated as the ratio of production rates between two consecutive trophic levels. Although seemingly simple, TTE estimates from lakes are rare. In our review, we explore the processes and structures that must be understood for a proper lake TTE estimate. We briefly discuss measurements of production rates and trophic positions and mention how ecological efficiencies, nutrients (N, P) and other compounds (fatty acids) affect energy transfer between trophic levels and hence TTE. Furthermore, we elucidate how TTE estimates are linked with size-based approaches according to the Metabolic Theory of Ecology, and how food-web models can be applied to study TTE in lakes. Subsequently, we explore temporal and spatial heterogeneity of production and TTE in lakes, with a particular focus on the links between benthic and pelagic habitats and between the lake and the terrestrial environment. We provide an overview of TTE estimates from lakes found in the published literature. Finally, we present two alternative approaches to estimating TTE. First, TTE can be seen as a mechanistic quantity informing about the energy and matter flow between producer and consumer groups. This approach is informative with respect to food-web structure, but requires enormous amounts of data. The greatest uncertainty comes from the proper consideration of basal production to estimate TTE of omnivorous organisms. An alternative approach is estimating food-chain and food-web efficiencies, by comparing the heterotrophic production of single consumer levels or the total sum of all heterotrophic production including that of heterotrophic bacteria to the total sum of primary production. We close the review by pointing to a few research questions that would benefit from more frequent and standardized estimates of TTE in lakes.more » « less
-
While many instructors have reservations against Wikipedia use in academic settings, editing Wikipedia teaches students valuable writing, editing, and critical thinking skills. Wikipedia assignments align with the community of inquiry framework, which focuses on the elements needed for a successful online learning experience. We report on a faculty mentoring network, created by WikiProject Limnology and Oceanography, which helped 14 instructors with little to no prior experience implement a Wikipedia assignment in their classes. We found that Wikipedia assignments increase students’ motivation to produce high quality work and enhance their awareness of reliable scientific sources. Wikipedia assignments can be comparable to other writing assignments in length and complexity, but have a far wider audience than a traditional research paper. Participants in our mentoring network reported challenges with implementing this new type of assignment, and here, we share resources and solutions to those reported barriers.more » « less