Controlling large-scale many-body quantum systems at the level of single photons and single atomic systems is a central goal in quantum information science and technology. Intensive research and development has propelled foundry-based silicon-on-insulator photonic integrated circuits to a leading platform for large-scale optical control with individual mode programmability. However, integrating atomic quantum systems with single-emitter tunability remains an open challenge. Here, we overcome this barrier through the hybrid integration of multiple InAs/InP microchiplets containing high-brightness infrared semiconductor quantum dot single photon emitters into advanced silicon-on-insulator photonic integrated circuits fabricated in a 300 mm foundry process. With this platform, we achieve single-photon emission via resonance fluorescence and scalable emission wavelength tunability. The combined control of photonic and quantum systems opens the door to programmable quantum information processors manufactured in leading semiconductor foundries.
Photonic quantum information processing and communication demand highly integrated device platforms, which can offer high-fidelity control of quantum states and seamless interface with fiber-optic networks simultaneously. Exploiting the unique quantum emitter characteristics compatible with photonic transduction, combined with the outstanding nonlinear optical properties of silicon carbide (SiC), we propose and numerically investigate a single-crystal cubic SiC-on-insulator (3C-SiCOI) platform toward multi-functional integrated quantum photonic circuit. Benchmarking with the state-of-the-art demonstrations on individual components, we have systematically engineered and optimized device specifications and functions, including state control via cavity quantum electrodynamics and frequency conversion between quantum emission and telecommunication wavelengths, while also considering the manufacturing aspects. This work will provide concrete guidelines and quantitative design considerations for realizing future SiCOI integrated photonic circuitry toward quantum information applications.
more » « less- Award ID(s):
- 1641099
- PAR ID:
- 10208857
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 29
- Issue:
- 2
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 1011
- Size(s):
- Article No. 1011
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Silicon carbide is evolving as a prominent solid-state platform for the realization of quantum information processing hardware. Angle-etched nanodevices are emerging as a solution to photonic integration in bulk substrates where color centers are best defined. We model triangular cross-section waveguides and photonic crystal cavities using Finite-Difference Time-Domain and Finite-Difference Eigensolver approaches. We analyze optimal color center positioning within the modes of these devices and provide estimates on achievable Purcell enhancement in nanocavities with applications in quantum communications. Using open quantum system modeling, we explore emitter-cavity interactions of multiple non-identical color centers coupled to both a single cavity and a photonic crystal molecule in SiC. We observe polariton and subradiant state formation in the cavity-protected regime of cavity quantum electrodynamics applicable in quantum simulation.more » « less
-
Silicon carbide (SiC) is rapidly emerging as a leading platform for the implementation of nonlinear and quantum photonics. Here, we find that commercial SiC, which hosts a variety of spin qubits, possesses low optical absorption that can enable SiC integrated photonics with quality factors exceeding
. We fabricate multimode microring resonators with quality factors as high as 1.1 million, and observe low-threshold ( ) optical parametric oscillation using the fundamental mode as well as optical microcombs spanning 200 nm using a higher-order mode. Our demonstration is an essential milestone in the development of photonic devices that harness the unique optical properties of SiC, paving the way toward the monolithic integration of nonlinear photonics with spin-based quantum technologies. -
Color centers in wide bandgap semiconductors are prominent candidates for solid-state quantum technologies due to their attractive properties including optical interfacing, long coherence times, and spin–photon and spin–spin entanglement, as well as the potential for scalability. Silicon carbide color centers integrated into photonic devices span a wide range of applications in quantum information processing in a material platform with quantum-grade wafer availability and advanced processing capabilities. Recent progress in emitter generation and characterization, nanofabrication, device design, and quantum optical studies has amplified the scientific interest in this platform. We provide a conceptual and quantitative analysis of the role of silicon carbide integrated photonics in three key application areas: quantum networking, simulation, and computing.
-
Abstract The scaling of many photonic quantum information processing systems is ultimately limited by the flux of quantum light throughout an integrated photonic circuit. Source brightness and waveguide loss set basic limits on the on-chip photon flux. While substantial progress has been made, separately, towards ultra-low loss chip-scale photonic circuits and high brightness single-photon sources, integration of these technologies has remained elusive. Here, we report the integration of a quantum emitter single-photon source with a wafer-scale, ultra-low loss silicon nitride photonic circuit. We demonstrate triggered and pure single-photon emission into a Si3N4photonic circuit with ≈ 1 dB/m propagation loss at a wavelength of ≈ 930 nm. We also observe resonance fluorescence in the strong drive regime, showing promise towards coherent control of quantum emitters. These results are a step forward towards scaled chip-integrated photonic quantum information systems in which storing, time-demultiplexing or buffering of deterministically generated single-photons is critical.