skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bipolar membrane polarization behavior with systematically varied interfacial areas in the junction region
The palette of applications for bipolar membranes (BPMs) has expanded recently beyond electrodialysis as they are now being considered for fuel cell and electrolysis applications. Their deployment in emerging electrochemical technologies arises from the need to have a membrane separator that provides disparate pH environments and to prevent species crossover. Most materials research for BPMs has focused on water dissociation catalysts and less emphasis has been given to the design of the polycation–polyanion interface for improving BPM performance. Here, soft lithography fabricated a series of micropatterned BPMs with precise control over the interfacial area in the bipolar junction. Polarization experiments showed that a 2.28× increase in interfacial area led to a 250 mV reduction in the onset potential. Additionally, the same increase in interfacial area yielded marginal improvements in current density due to the junction region being under kinetics-diffusion control. A simple physics model based on the electric field of the junction region rationalized the reduction in the overpotential for water dissociation as a function of interfacial area. Finally, the soft lithography approach was also conducive for fabricating BPMs with different chemistries ranging from perfluorinated polymer backbones to alkaline stable poly(arylene) hydrocarbon polymers. These polymer chemistries are better suited for fuel cell and electrolysis applications. The BPM featuring the alkaline stable poly(terphenyl) anion exchange membrane had an onset potential of 0.84 V, which was near the thermodynamic limit, and was about 150 mV lower than a commercially available variant.  more » « less
Award ID(s):
1703307
PAR ID:
10208919
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
ISSN:
2050-7488
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The alkaline hydrogen evolution reaction (A-HER) holds great promise for clean hydrogen fuel generation but its practical utilization is severely hindered by the sluggish kinetics for water dissociation in alkaline solutions. Traditional ways to improve the electrochemical kinetics for A-HER catalysts have been focusing on surface modification, which still can not meet the demanding requirements for practical water electrolysis because of catalyst surface deactivation. Herein, we report an interior modification strategy to significantly boost the A-HER performance. Specifically, a trace amount of Pt was doped in the interior Co 2 P (Pt–Co 2 P) to introduce a stronger dopant–host interaction than that of the surface-modified catalyst. Consequently, the local chemical state and electronic structure of the catalysts were adjusted to improve the electron mobility and reduce the energy barriers for hydrogen adsorption and H–H bond formation. As a proof-of-concept, the interior-modified Pt–Co 2 P shows a reduced onset potential at near-zero volts for the A-HER, low overpotentials of 2 mV and 58 mV to achieve 10 and 100 mA cm −2 , and excellent durability for long-term utilization. The interior-modified Pt–Co 2 P delivers superior A-HER performance to Pt/C and other state-of-the-art electrocatalysts. This work will open a new avenue for A-HER catalyst design. 
    more » « less
  2. Dissolved iron (Fe) species are a pre-requisite for the most active catalyst sites for the oxygen evolution reaction in alkaline electrolytes, but the overall effects of dissolved Fe on energy- efficient advanced alkaline water electrolysis cells remain unclear. Here, we systematically control the concentration of Fe in a model zero-gap alkaline water electrolyzer to understand the interactions between Fe and high surface area catalyst coatings. Cells employing a platinum-group- metal-containing cathode and a high surface area, mixed-metal-oxide anode yielded an optimum voltage efficiency at elevated temperatures and in the presence of 6 ppm Fe, which reduced the cell voltage by ~100 mV compared to rigorously Fe-free electrolytes. Increasing concentrations of Fe led to a systematic increase in anode activity towards the oxygen evolution reaction and a reduction in the electrochemically active surface area at both the anode and cathode. Metallic Fe was not observed to electrodeposit at cathodes which operate at overpotentials ≤ 120 mV, but dissolved Fe does reduce the apparent number density of sites available for hydride adsorption. These findings suggest that the energy efficiency of advanced alkaline water electrolysis systems can be improved by managing the Fe concentration in recirculating KOH electrolytes. 
    more » « less
  3. Abstract Electrochemical nitrate reduction reaction (NO3RR) has garnered increasing attention as a pathway for converting a harmful pollutant (nitrate) into a value‐added product (ammonia). However, high selectivity toward ammonia (NH3) is imperative for process viability. Optimizing proton availability near the catalyst is important for achieving selective NH3production. Here, the aim is to systematically examine the impacts of proton availability on NO3RR selectivity in a bipolar membrane (BPM)‐based membrane electrode assembly (MEA) system. The BPM generates a proton flux from the membrane toward the catalyst during electrolysis. Thus, the BPM‐MEA system can modulate the proton flux during operation. The impact of interposer layers, proton scavenging electrolytes (CO32−), and catalyst configurations are also examined to identify which local microenvironments favor ammonia formation. It is found that a moderate proton supply allows for an increase in ammonia yield by 576% when compared to the standard MEA setup. This also results in a high selectivity of 26 (NH3over NO2) at an applied current density of 200 mA cm−2
    more » « less
  4. Water electrolysis using renewable energy inputs is being actively pursued as a green route for hydrogen production. However, it is limited by the high energy consumption due to the sluggish anodic oxygen evolution reaction (OER) and safety issues associated with H2 and O2 mixing. Here, we replaced OER with an electrocatalytic oxidative dehydrogenation (EOD) of aldehydes for bipolar H2 production and achieved industrial-level current densities at cell voltages much lower than during water electrolysis. Experimental and computational studies suggest a reasonable barrier for C-H dissociation on Cu surfaces, mainly through a diol intermediate, with a potential-dependent competition with the solution-phase Cannizzaro reaction. The kinetics of EOD reaction was further enhanced by a porous CuAg catalyst prepared from a galvanic replacement method. Through Ag incorporation and its modification of the Cu surface, the geometric current density and electrocatalyst durability were significantly improved. Finally, we engineered a bipolar H2 production system in membrane-electrode assembly-based flow cells to facilitate mass transport, achieving a maximum current density of 248 and 390 mA cm−2 at cell voltages of 0.4 V and 0.6 V, respectively. The faradaic efficiency of H2 from both cathode and anode reactions both attained ~100%. Taking advantage of the bipolar H2 production without the issues associated with H2/O2 mixing, an inexpensive, easy-to-manufacture dialysis porous membrane was demonstrated to substitute the costly anion exchange membrane, achieving an energy-efficient and cost-effective process in a simple reactor for H2 production. The estimated H2 price of $2.51/kg from an initial technoeconomic assessment is competitive with US DoE’s “Green H2” targets. 
    more » « less
  5. Transition metal selenides have attracted intensive interest as cost-effective electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) because of the continuous thrust in sustainable energy conversion. In this article a Mn-based bifunctional electrocatalyst, MnSe, has been identified which shows efficient OER and ORR activity in alkaline medium. The catalytic activity could be further enhanced by using multiwalled carbon nanotubes (MWCNTs) which increases the charge transfer and electronic conductivity of the catalyst composite. This MnSe@MWCNT catalyst composite exhibits a very low overpotential of 290 mV at 10 mA cm −2 , which outperforms state-of-the-art RuO 2 as well as other oxide based electrocatalysts. Furthermore, the composite's facile OER kinetics was evidenced by its small Tafel slope of 54.76 mV dec −1 and low charge transfer resistance, indicating quick transport of the reactant species at the electrode interface. The MnSe@MWCNT also exhibited efficient electrocatalytic activity for ORR with an E onset of 0.94 V, which is among the best reported to date for chalcogenide based ORR electrocatalysts. More importantly, this MnSe-based ORR electrocatalyst exhibits high degree of methanol tolerance, showing no degradation of catalyst performance in the presence of copious quantities of methanol, thereby out-performing the state-of-the-art Pt electrocatalyst. The catalyst composite also exhibited exceptional functional and compositional stability for OER and ORR after a prolonged period of continuous operation in alkaline medium. The surface Raman analysis after OER revealed the retention of manganese selenide surface with evidence of oxo coordination, confirming the formation of an (oxy)selenide as the active surface for OER. Such efficient bifunctional OER and ORR activity makes this MnSe based catalyst attractive for overall electrolysis in regenerative as well as direct methanol fuel cells. 
    more » « less