skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluating Liquefaction Triggering Potential Using Seismic Input Parameters that Are Consistent with ASCE 7-16
ASCE 7-16 details how the peak ground acceleration (PGA) should be determined for evaluating liquefaction triggering, with this PGA reflecting the influence of a range of earthquake magnitudes on a site’s seismic hazard. Similarly, the Finn and Wightman magnitude-weighting scheme can be used to account for the full range of magnitudes influencing the seismic hazard at a site, where the weights are derived from a site’s seismic hazard deaggregation data. However, the deaggregation data for the seismic hazard maps for the Central/Eastern U.S. are only available for rock motions and not motions at the surface of the soil profile. The authors explore this issue by comparing the weighted average magnitude scaling factors (MSF) and depth-stress weighting factor (rd) values for multiple sites in the Western U.S. developed using deaggregation data for rock motions and for motions at the surface of the soil profiles. Based on these comparisons, the authors found that using the PGA deaggregation data for rock conditions yield similar weighted averages for MSF and rd as those computed using deaggregation data for the PGA at the surface of the soil profile.  more » « less
Award ID(s):
1825189
PAR ID:
10209087
Author(s) / Creator(s):
Editor(s):
J.P. Hambleton, R. Makhnenko
Date Published:
Journal Name:
Geo-Congress 2020: Geotechnical Earthquake Engineering and Special Topics
Volume:
GSP 318
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. L. Wang, J.-M. Zhang (Ed.)
    The stress-based simplified liquefaction triggering procedure is the most widely used approach to assess liquefaction potential worldwide. However, empirical aspects of the procedure were primarily developed for tectonic earthquakes in active shallow-crustal tectonic regimes. Accordingly, the suitability of the simplified procedure for evaluating liquefaction triggering in other tectonic regimes and for induced earthquakes is questionable. Specifically, the suitability of the depth-stress reduction factor (rd) and magnitude scaling factor (MSF) relationships inherent to existing simplified models is uncertain for use in evaluating liquefaction triggering in stable continental regimes, subduction zone regimes, or for liquefaction triggering due to induced seismicity. This is because both rd,which accounts for the non-rigid soil profile response, andMSF,which accounts for shaking duration, are affected by the characteristics of the ground motions, which can differ among tectonic regimes, and soil profiles, which can vary regionally. Presented in this paper is a summary of ongoing efforts to regionalize liquefaction triggering models for evaluating liquefaction hazard. Central to this regionalization is the consistent development of tectonic-regime-specific rd and MSF relationships. The consistency in the approaches used to develop these relationships allows them to be interchanged within the same overall liquefaction triggering evaluation framework. 
    more » « less
  2. The US National Seismic Hazard Model (NSHM) was updated in 2023 for all 50 states using new science on seismicity, fault ruptures, ground motions, and probabilistic techniques to produce a standard of practice for public policy and other engineering applications (defined for return periods greater than ∼475 or less than ∼10,000 years). Changes in 2023 time-independent seismic hazard (both increases and decreases compared to previous NSHMs) are substantial because the new model considers more data and updated earthquake rupture forecasts and ground-motion components. In developing the 2023 model, we tried to apply best available or applicable science based on advice of co-authors, more than 50 reviewers, and hundreds of hazard scientists and end-users, who attended public workshops and provided technical inputs. The hazard assessment incorporates new catalogs, declustering algorithms, gridded seismicity models, magnitude-scaling equations, fault-based structural and deformation models, multi-fault earthquake rupture forecast models, semi-empirical and simulation-based ground-motion models, and site amplification models conditioned on shear-wave velocities of the upper 30 m of soil and deeper sedimentary basin structures. Seismic hazard calculations yield hazard curves at hundreds of thousands of sites, ground-motion maps, uniform-hazard response spectra, and disaggregations developed for pseudo-spectral accelerations at 21 oscillator periods and two peak parameters, Modified Mercalli Intensity, and 8 site classes required by building codes and other public policy applications. Tests show the new model is consistent with past ShakeMap intensity observations. Sensitivity and uncertainty assessments ensure resulting ground motions are compatible with known hazard information and highlight the range and causes of variability in ground motions. We produce several impact products including building seismic design criteria, intensity maps, planning scenarios, and engineering risk assessments showing the potential physical and social impacts. These applications provide a basis for assessing, planning, and mitigating the effects of future earthquakes. 
    more » « less
  3. In the U.S. Pacific Northwest (PNW), the historic earthquake record is often insufficient to provide inputs to seismic-hazard analyses or to inform ground-motion predictions for certain seismic sources (e.g., the Cascadia Subduction Zone, CSZ). As a result, paleoseismic studies are commonly used to infer information about the seismic hazard. However, among the many forms of coseismic evidence, soil liquefaction provides the best, if not only, evidence from which the intensities of previous ground motions may be constrained. Accordingly, the overarching goal of this research is to use paleoliquefaction to elucidate previous ground motions in the PNW – both for CSZ events and others – and to further constrain the locations, magnitudes, and recurrence rates of such ruptures. Towards that goal, this paper: (i) reviews current paleoliquefaction inverse-analysis methods and their limited, prior applications in the PNW; (ii) compiles all PNW paleoliquefaction evidence from the literature into a GIS database, resulting in data from 185 study sites (e.g., feature locations, types, sizes, and ages); and (iii) develops maps – specific to the CSZ – that forecast paleoliquefaction for 30 different simulations of a CSZ event. These maps can be used to guide field explorations for new evidence, such that they are conducted efficiently and strategically, considering the apparent utility of evidence toward constraint of CSZ ground-motion models. Of additional utility, this process provides regional ground-motion predictions for physics-based simulations of an M9 event, to include expected site effects. Collectively, the maps of expected shaking intensity and liquefaction may be useful in downstream hazard modelling, regional loss estimation, policy development, and science communication. Ultimately, as more paleoliquefaction evidence is identified and studied, better constraint of regional ground-motion hazards will result. Version 2 (this posting) supersedes Version 1 (10.17603/ds2-jm19-2w09). Updates include GIS rasters that provide regional ground-motion intensity predictions (PGA, PGV) for 30 physics-based simulations of an M9 event, to include expected site effects 
    more » « less
  4. null (Ed.)
    ABSTRACT A probabilistic seismic hazard analysis performed for rock conditions and modified for soil conditions using deterministic site amplification factors does not account for uncertainty in site effects, which can be significant. One approach to account for such uncertainty is to compute a weighted average amplification curve using a logic tree that accounts for several possible scenarios with assigned weights corresponding to their relative likelihood or confidence. However, this approach can lead to statistical smoothing of the amplification curve and possibly to decreased computed hazard as epistemic uncertainty increases. This is against the expected trend that higher uncertainty leads to higher computed hazard, thus reducing the incentive for practitioners to characterize soil properties at a site. This study proposes a modified approach in which the epistemic uncertainty is captured in a plot of amplification factors versus period. Using a case history, the proposed method is shown to improve the issue with the weighted average method for at least two oscillator periods and to yield similar results for two other periods in which the highlighted issue is less significant. 
    more » « less
  5. ABSTRACT A depletion of high-frequency ground motions on soil sites has been observed in recent large earthquakes and is often attributed to a nonlinear soil response. Here, I show that the reduced amplitudes of high-frequency horizontal-to-vertical spectral ratios (HVSRs) on soil can also be caused by a smooth crustal velocity model with low shear-wave velocities underneath soil sites. I calculate near-fault ground motions using both 2D dynamic rupture simulations and point-source models for both rock and soil sites. The 1D velocity models used in the simulations are derived from empirical relationships between seismic wave velocities and depths in northern California. The simulations for soil sites feature lower shear-wave velocities and thus larger Poisson’s ratios at shallow depths than those for rock sites. The lower shear-wave velocities cause slower shallow rupture and smaller shallow slip, but both soil and rock simulations have similar rupture speeds and slip for the rest of the fault. However, the simulated near-fault ground motions on soil and rock sites have distinct features. Compared to ground motions on rock, horizontal ground acceleration on soil is only amplified at low frequencies, whereas vertical ground acceleration is deamplified for the whole frequency range. Thus, the HVSRs on soil exhibit a depletion of high-frequency energy. The comparison between smooth and layered velocity models demonstrates that the smoothness of the velocity model plays a critical role in the contrasting behaviors of HVSRs on soil and rock for different rupture styles and velocity profiles. The results reveal the significant role of shallow crustal velocity structure in the generation of high-frequency ground motions on soil sites. 
    more » « less