skip to main content


Title: Crystal Chemistry of Carnotite in Abandoned Mine Wastes
The crystal chemistry of carnotite (prototype formula: K2(UO2)2(VO4)2·3H2O) occurring in mine wastes collected from Northeastern Arizona was investigated by integrating spectroscopy, electron microscopy, and x-ray diffraction analyses. Raman spectroscopy confirms that the uranyl vanadate phase present in the mine waste is carnotite, rather than the rarer polymorph vandermeerscheite. X-ray diffraction patterns of the carnotite occurring in these mine wastes are in agreement with those reported in the literature for a synthetic analog. Carbon detected in this carnotite was identified as organic carbon inclusions using transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) analyses. After excluding C and correcting for K-drift from the electron microprobe analyses, the composition of the carnotite was determined as 8.64% K2O, 0.26% CaO, 61.43% UO3, 20.26% V2O5, 0.38% Fe2O3, and 8.23% H2O. The empirical formula, (K1.66Ca0.043Al(OH)2+0.145 Fe(OH)2+0.044)((U0.97)O2)2((V1.005)O4)2·4H2O of the studied carnotite, with an atomic ratio 1.9:2:2 for K:U:V, is similar to the that of carnotite (K2(UO2)2(VO4)2·3H2O) reported in the literature. Lattice spacing data determined using selected area electron diffraction (SAED)-TEM suggests: (1) complete amorphization of the carnotite within 120 s of exposure to the electron beam and (2) good agreement of the measured d-spacings for carnotite in the literature. Small differences between the measured and literature d-spacing values are likely due to the varying degree of hydration between natural and synthetic materials. Such information about the crystal chemistry of carnotite in mine wastes is important for an improved understanding of the occurrence and reactivity of U, V, and other elements in the environment.  more » « less
Award ID(s):
1652619 1914490
NSF-PAR ID:
10209151
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Minerals
Volume:
10
Issue:
10
ISSN:
2075-163X
Page Range / eLocation ID:
883
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The mobility and accumulation of uranium (U) along the Rio Paguate, adjacent to the Jackpile Mine, in Laguna Pueblo, New Mexico was investigated using aqueous chemistry, electron microprobe, X-ray diffraction and spectroscopy analyses. Given that it is not common to identify elevated concentrations of U in surface water sources, the Rio Paguate is a unique site that concerns the Laguna Pueblo community. This study aims to better understand the solid chemistry of abandoned mine waste sediments from the Jackpile Mine and identify key hydrogeological and geochemical processes that affect the fate of U along the Rio Paguate. Solid analyses using X-ray fluorescence determined that sediments located in the Jackpile Mine contain ranges of 320 to 9200 mg kg −1 U. The presence of coffinite, a U( iv )-bearing mineral, was identified by X-ray diffraction analyses in abandoned mine waste solids exposed to several decades of weathering and oxidation. The dissolution of these U-bearing minerals from abandoned mine wastes could contribute to U mobility during rain events. The U concentration in surface waters sampled closest to mine wastes are highest during the southwestern monsoon season. Samples collected from September 2014 to August 2016 showed higher U concentrations in surface water adjacent to the Jackpile Mine (35.3 to 772 μg L −1 ) compared with those at a wetland 4.5 kilometers downstream of the mine (5.77 to 110 μg L −1 ). Sediments co-located in the stream bed and bank along the reach between the mine and wetland had low U concentrations (range 1–5 mg kg −1 ) compared to concentrations in wetland sediments with higher organic matter (14–15%) and U concentrations (2–21 mg kg −1 ). Approximately 10% of the total U in wetland sediments was amenable to complexation with 1 mM sodium bicarbonate in batch experiments; a decrease of U concentration in solution was observed over time in these experiments likely due to re-association with sediments in the reactor. The findings from this study provide new insights about how hydrologic events may affect the reactivity of U present in mine waste solids exposed to surface oxidizing conditions, and the influence of organic-rich sediments on U accumulation in the Rio Paguate. 
    more » « less
  2. Abstract

    Next‐generation electronics and energy technologies can now be developed as a result of the design, discovery, and development of novel, environmental friendly lead (Pb)‐free ferroelectric materials with improved characteristics and performance. However, there have only been a few reports of such complex materials’ design with multi‐phase interfacial chemistry, which can facilitate enhanced properties and performance. In this context, herein, novel lead‐free piezoelectric materials (1‐x)Ba0.95Ca0.05Ti0.95Zr0.05O3‐(x)Ba0.95Ca0.05Ti0.95Sn0.05O3, are reported, which are represented as (1‐x)BCZT‐(x)BCST, with demonstrated excellent properties and energy harvesting performance. The (1‐x)BCZT‐(x)BCST materials are synthesized by high‐temperature solid‐state ceramic reaction method by varyingxin the full range (x= 0.00–1.00). In‐depth exploration research is performed on the structural, dielectric, ferroelectric, and electro‐mechanical properties of (1‐x)BCZT‐(x)BCST ceramics. The formation of perovskite structure for all ceramics without the presence of any impurity phases is confirmed by X‐ray diffraction (XRD) analyses, which also reveals that the Ca2+, Zr4+, and Sn4+are well dispersed within the BaTiO3lattice. For all (1‐x)BCZT‐(x)BCST ceramics, thorough investigation of phase formation and phase‐stability using XRD, Rietveld refinement, Raman spectroscopy, high‐resolution transmission electron microscopy (HRTEM), and temperature‐dependent dielectric measurements provide conclusive evidence for the coexistence of orthorhombic + tetragonal (Amm2+P4mm) phases at room temperature. The steady transition ofAmm2crystal symmetry toP4mmcrystal symmetry with increasingxcontent is also demonstrated by Rietveld refinement data and related analyses. The phase transition temperatures, rhombohedral‐orthorhombic (TR‐O), orthorhombic‐ tetragonal (TO‐T), and tetragonal‐cubic (TC), gradually shift toward lower temperature with increasingxcontent. For (1‐x)BCZT‐(x)BCST ceramics, significantly improved dielectric and ferroelectric properties are observed, including relatively high dielectric constantεr≈ 1900–3300 (near room temperature),εr≈ 8800–12 900 (near Curie temperature), dielectric loss, tanδ≈ 0.01–0.02, remanent polarizationPr≈ 9.4–14 µC cm−2, coercive electric fieldEc≈ 2.5–3.6 kV cm−1. Further, high electric field‐induced strainS≈ 0.12–0.175%, piezoelectric charge coefficientd33≈ 296–360 pC N−1, converse piezoelectric coefficient ≈ 240–340 pm V−1, planar electromechanical coupling coefficientkp≈ 0.34–0.45, and electrostrictive coefficient (Q33)avg≈ 0.026–0.038 m4C−2are attained. Output performance with respect to mechanical energy demonstrates that the (0.6)BCZT‐(0.4)BCST composition (x= 0.4) displays better efficiency for generating electrical energy and, thus, the synthesized lead‐free piezoelectric (1‐x)BCZT‐(x)BCST samples are suitable for energy harvesting applications. The results and analyses point to the outcome that the (1‐x)BCZT‐(x)BCST ceramics as a potentially strong contender within the family of Pb‐free piezoelectric materials for future electronics and energy harvesting device technologies.

     
    more » « less
  3. Abstract In this study, we investigated an unusual natural Mn oxide hollandite-group mineral from the Kohare Mine, Iwate Prefecture, Japan, that has predominantly water molecules in the tunnels, with K, Na, Ca, and Ba. The specimens are labeled as type manjiroite, but our analyses show that Na is not the dominant tunnel species, nor is it even the primary tunnel cation, suggesting either an error in the original analyses or significant compositional variation within samples from the type locality. Chemical analyses, X-ray photoelectron spectroscopy, and thermal gravimetric analysis measurements combined with Rietveld refinement results using synchrotron X-ray powder diffraction data suggest the chemical formula: (K0.19Na0.17Ca0.03Ba0.01H2O1.60)(Mn5.024+Mn2.823+Al0.14Fe0.02)O13.47(OH)2.53. Our analyses indicate that water is the primary tunnel species, and although water has been reported as a component in natural hollandites, this is the first detailed study of the crystal structure and dehydration behavior of a natural hydrous hollandite with water as the predominant tunnel species. This work underscores the rarity of natural Na-rich hollandite phases and focuses new attention on the role of hydrous components of hollandite-like phases in determining their capacities to exchange or accommodate various cations, such as Li+, Na+, Ba2+, Pb2+, and K+ in natural systems. 
    more » « less
  4. Nanocrystalline MnFe2O4 has shown promise as a catalyst for the oxygen reduction reaction (ORR) in alkaline solutions, but the material has been sparingly studied as highly ordered thin-film catalysts. To examine the role of surface termination and Mn and Fe site occupancy, epitaxial MnFe2O4 and Fe3O4 spinel oxide films were grown on (001)- and (111)-oriented Nb:SrTiO3 perovskite substrates using molecular beam epitaxy and studied as electrocatalysts for the oxygen reduction reaction (ORR). High-resolution X-ray diffraction (HRXRD) and X-ray photoelectron spectroscopy (XPS) show the synthesis of pure phase materials, while scanning transmission electron microscopy (STEM) and reflection high-energy electron diffraction (RHEED) analysis demonstrate island-like growth of (111) surface-terminated pyramids on both (001)- and (111)-oriented substrates, consistent with the literature and attributed to the lattice mismatch between the spinel films and the perovskite substrate. Cyclic voltammograms under a N2 atmosphere revealed distinct redox features for Mn and Fe surface termination based on comparison of MnFe2O4 and Fe3O4. Under an O2 atmosphere, electrocatalytic reduction of oxygen was observed at both Mn and Fe redox features; however, a diffusion-limited current was only achieved at potentials consistent with Fe reduction. This result contrasts with that of nanocrystalline MnFe2O4 reported in the literature where the diffusion-limited current is achieved with Mn-based catalysis. This difference is attributed to a low density of Mn surface termination, as determined by the integration of current from CVs collected under N2, in addition to low conductivity through the MnFe2O4 film due to the degree of inversion. Such low densities are attributed to the synthetic method and island-like growth pattern and highlight challenges in studying ORR catalysis with single-crystal spinel materials. 
    more » « less
  5. The in situ metalorganic chemical vapor deposition (MOCVD) growth of Al 2 O 3 dielectrics on β-Ga 2 O 3 and β-(Al x Ga 1−x ) 2 O 3 films is investigated as a function of crystal orientations and Al compositions of β-(Al x Ga 1−x ) 2 O 3 films. The interface and film qualities of Al 2 O 3 dielectrics are evaluated by high-resolution x-ray diffraction and scanning transmission electron microscopy imaging, which indicate the growth of high-quality amorphous Al 2 O 3 dielectrics with abrupt interfaces on (010), (100), and [Formula: see text] oriented β-(Al x Ga 1−x ) 2 O 3 films. The surface stoichiometries of Al 2 O 3 deposited on all orientations of β-(Al x Ga 1−x ) 2 O 3 are found to be well maintained with a bandgap energy of 6.91 eV as evaluated by high-resolution x-ray photoelectron spectroscopy, which is consistent with the atomic layer deposited (ALD) Al 2 O 3 dielectrics. The evolution of band offsets at both in situ MOCVD and ex situ ALD deposited Al 2 O 3 /β-(Al x Ga 1−x ) 2 O 3 is determined as a function of Al composition, indicating the influence of the deposition method, orientation, and Al composition of β-(Al x Ga 1−x ) 2 O 3 films on resulting band alignments. Type II band alignments are determined at the MOCVD grown Al 2 O 3 /β-(Al x Ga 1−x ) 2 O 3 interfaces for the (010) and (100) orientations, whereas type I band alignments with relatively low conduction band offsets are observed along the [Formula: see text] orientation. The results from this study on MOCVD growth and band offsets of amorphous Al 2 O 3 deposited on differently oriented β-Ga 2 O 3 and β-(Al x Ga 1−x ) 2 O 3 films will potentially contribute to the design and fabrication of future high-performance β-Ga 2 O 3 and β-(Al x Ga 1−x ) 2 O 3 based transistors using MOCVD in situ deposited Al 2 O 3 as a gate dielectric. 
    more » « less