Multiple mechanized ocean vessels, including both surface ships and submerged vehicles, can be simultaneously monitored over instantaneous continental-shelf scale regions >10,000 km 2 via passive ocean acoustic waveguide remote sensing. A large-aperture densely-sampled coherent hydrophone array system is employed in the Norwegian Sea in Spring 2014 to provide directional sensing in 360 degree horizontal azimuth and to significantly enhance the signal-to-noise ratio (SNR) of ship-radiated underwater sound, which improves ship detection ranges by roughly two orders of magnitude over that of a single hydrophone. Here, 30 mechanized ocean vessels spanning ranges from nearby to over 150 km from the coherent hydrophone array, are detected, localized and classified. The vessels are comprised of 20 identified commercial ships and 10 unidentified vehicles present in 8 h/day of Passive Ocean Acoustic Waveguide Remote Sensing (POAWRS) observation for two days. The underwater sounds from each of these ocean vessels received by the coherent hydrophone array are dominated by narrowband signals that are either constant frequency tonals or have frequencies that waver or oscillate slightly in time. The estimated bearing-time trajectory of a sequence of detections obtained from coherent beamforming are employed to determine the horizontal location of each vessel using the Moving Array Triangulationmore »
A Pilot Study to Assess the Reliability of Sensing Joint Acoustic Emissions of the Wrist
Joint acoustic emission (JAE) sensing has recently proven to be a viable technique for non-invasive quantification indicating knee joint health. In this work, we adapt the acoustic emission sensing method to measure the JAEs of the wrist—another joint commonly affected by injury and degenerative disease. JAEs of seven healthy volunteers were recorded during wrist flexion-extension and rotation with sensitive uniaxial accelerometers placed at eight locations around the wrist. The acoustic data were bandpass filtered (150 Hz–20 kHz). The signal-to-noise ratio (SNR) was used to quantify the strength of the JAE signals in each recording. Then, nine audio features were extracted, and the intraclass correlation coefficient (ICC) (model 3,k), coefficients of variability (CVs), and Jensen–Shannon (JS) divergence were calculated to evaluate the interrater repeatability of the signals. We found that SNR ranged from 4.1 to 9.8 dB, intrasession and intersession ICC values ranged from 0.629 to 0.886, CVs ranged from 0.099 to 0.241, and JS divergence ranged from 0.18 to 0.20, demonstrating high JAE repeatability and signal strength at three locations. The volunteer sample size is not large enough to represent JAE analysis of a larger population, but this work will lay a foundation for future work in using wrist JAEs more »
- Award ID(s):
- 1749677
- Publication Date:
- NSF-PAR ID:
- 10209172
- Journal Name:
- Sensors
- Volume:
- 20
- Issue:
- 15
- Page Range or eLocation-ID:
- 4240
- ISSN:
- 1424-8220
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An eight-element oil-filled hydrophone array is used to measure the acoustic field in littoral waters. This prototype array was deployed during an experiment between Jeffrey’s Ledge and the Stellwagen Bank region off the coast of Rockport, Massachusetts USA. During the experiment, several humpback whale vocalizations, distant ship tonals and high frequency conventional echosounder pings were recorded. Visual confirmation of humpback moving in bearing relative to the array verifies the directional sensing from array beamforming. During deployment, the array is towed at speeds varying from 4-7 kts in water depths of roughly 100 m with conditions at sea state 2 to 3. This array system consists of a portable winch with array, tow cable and 3 water-resistant boxes housing electronics. This system is deployed and operated by 2 crew members onboard a 13 m commercial fishing vessel during the experiment. Non-acoustic sensor (NAS) information is obtained to provide depth, temperature, and heading data using commercial off the shelf (COTS) components utilizing RS485/232 data communications. Acoustic data sampling was performed at 8 kHz, 30 kHz and 100 kHz with near real-time processing of data and enhanced Signal to Noise Ratio (SNR) from beamforming. The electrical system components are deployed with 3 stackedmore »
-
Purpose Miniaturization of digital technologies has created new opportunities for remote health care and neuroscientific fieldwork. The current study assesses comparisons between in-home auditory brainstem response (ABR) recordings and recordings obtained in a traditional lab setting. Method Click-evoked and speech-evoked ABRs were recorded in 12 normal-hearing, young adult participants over three test sessions in (a) a shielded sound booth within a research lab, (b) a simulated home environment, and (c) the research lab once more. The same single-family house was used for all home testing. Results Analyses of ABR latencies, a common clinical metric, showed high repeatability between the home and lab environments across both the click-evoked and speech-evoked ABRs. Like ABR latencies, response consistency and signal-to-noise ratio (SNR) were robust both in the lab and in the home and did not show significant differences between locations, although variability between the home and lab was higher than latencies, with two participants influencing this lower repeatability between locations. Response consistency and SNR also patterned together, with a trend for higher SNRs to pair with more consistent responses in both the home and lab environments. Conclusions Our findings demonstrate the feasibility of obtaining high-quality ABR recordings within a simulated home environment thatmore »
-
Intent recognition in lower-limb assistive devices typically relies on neuromechanical sensing of an affected limb acquired through embedded device sensors. It remains unknown whether signals from more widespread sources such as the contralateral leg and torso positively influence intent recognition, and how specific locomotor tasks that place high demands on the neuromuscular system, such as changes of direction, contribute to intent recognition. In this study, we evaluated the performances of signals from varying mechanical modalities (accelerographic, gyroscopic, and joint angles) and locations (the trailing leg, leading leg and torso) during straight walking, changes of direction (cuts), and cuts to stair ascent with varying task anticipation. Biomechanical information from the torso demonstrated poor performance across all conditions. Unilateral (the trailing or leading leg) joint angle data provided the highest accuracy. Surprisingly, neither the fusion of unilateral and torso data nor the combination of multiple signal modalities improved recognition. For these fused modality data, similar trends but with diminished accuracy rates were reported during unanticipated conditions. Finally, for datasets that achieved a relatively accurate (≥90%) recognition of unanticipated tasks, these levels of recognition were achieved after the mid-swing of the trailing/transitioning leg, prior to a subsequent heel strike. These findings suggest thatmore »
-
Introduction: Changes in speech have the potential to provide important information on the diagnosis and progression of various neurological diseases. Many researchers have relied on open-source speech features to develop algorithms for measuring speech changes in clinical populations as they are convenient and easy to use. However, the repeatability of open-source features in the context of neurological diseases has not been studied. Methods: We used a longitudinal sample of healthy controls, individuals with amyotrophic lateral sclerosis, and individuals with suspected frontotemporal dementia, and we evaluated the repeatability of acoustic and language features separately on these 3 data sets. Results: Repeatability was evaluated using intraclass correlation (ICC) and the within-subjects coefficient of variation (WSCV). In 3 sets of tasks, the median ICC were between 0.02 and 0.55, and the median WSCV were between 29 and 79%. Conclusion: Our results demonstrate that the repeatability of speech features extracted using open-source tool kits is low. Researchers should exercise caution when developing digital health models with open-source speech features. We provide a detailed summary of feature-by-feature repeatability results (ICC, WSCV, SE of measurement, limits of agreement for WSCV, and minimal detectable change) in the online supplementary material so that researchers may incorporate repeatability informationmore »